- [07-27]临床研究生一枚,导师不管,也没师兄师姐,课题完全没方向……该怎么...
- [07-31]值得思考的多中心临床研究!
- [08-10]药物临床试验申请书
- [02-28]753临床研究综合(一)或754临床研究综合(二)是自己选择一门考吗?
- [08-09]临床试验分期
- [01-25]临床医学研究的特点
- [02-24]新药临床研究各期内容及目的
- [07-22]中华医学会第九次全国病毒性肝炎慢性化、重症化基础与临床研究进展...
- [08-05]负责临床试验的研究者应具备的条件是什么?_
Realtime PCR 仪价格多少?
Alphaemittersreleaseaparticlecomposedof2neutronsand2protons.Theatomicnumberisthereforereducedby2,andtheatomicmassby4.Alphaparticlesaresoheavythatevenwithlowvelocitytheirmomentumishigh.Theydon"ttravelfar,butwhentheycollidewithothermoleculestheydoalotofdamage,thereforealphaemittersareconsideredtobequitehazardous. Whenabetaparticleemitterdecays,oneofitsextraneutronsisconvertedtoaproton,increasingitsatomicnumberby1withoutchangingitsatomicmass.Thebreakdownisaccompaniedbytheemissionofanegativelychargedparticleoflowmass,calledthebetaparticle,andanunchargedparticleoflowmass,calledaneutrino.Forexample,hydrogenconsistsofjustoneprotonandoneelectron.Deuterium(2-H),acomponentof"heavywater,"consistsofaproton,anelectron,andoneneutron,andisastableisotope.Tritium(3-H)isanunstableisotopeofhydrogen,consistingofaproton,anelectron,andtwoneutrons.Whenanatomoftritiumdecays,oneoftheneutronsisconvertedtoaproton,onebetaparticleandoneneutrinoarereleased,andaheliumisotope(3-He)remains.Tritiumiscalleda"soft"betaemitter,becauseitsbetaparticleshaverelativelylowvelocities.Ahardbetaemittersuchas32-P(phosphorous)ismoredangerousbecauseitsbetaparticlescarrymorekineticenergy(howeveritiseasiertodetect-readon). GammaraysconsistofelectromagneticradiationresemblingX-rays.Anexampleofagammaemitteris131-I(iodine).Gammaradiationmayaccompanyeitheralphaorbetaparticleemission. AtraditionalunitofradioactivityistheCurie(Ci),whichisdefinedasthatquantityofanyradioisotopeundergoing2.22x10^12atomicdisintegrationsperminute(DPM).AmilliCurie(mCi)ofaradioisotopeundergoes2.22x109DPM,andamicroCurieproduces2.22x10^6DPM.Since1975,thebecquerel(Bq)hasreplacedtheCurieasthepreferredinternationalunitofradioactivity.OneBqisdefinedasoneatomicdisintegrationpersecond,or2.703x10^-11dpm.WorkingamountsinalaboratorymightbedescribedinmicroCuriesormilliCuries,kiloBecqerelsormegaBecquerels. Whentheproductofanatomicdisintegrationisastableisotope,atomicdecayleaveslessradioactivematerialbehind.Therefore,astimepasses,theamountofactivitydeclineslogarithmically.Thehalf-lifeofaradioisotopeisthetimeittakesforone-halfoftheunstableatomstodisintegrate.Eachradioisotopehasacharacteristicrateofdecayandpatternofradiation.Forexample,14-Cisalowenergybetaemitterwithahalflifeof5500years. Aradioisotope,oranycompoundthatcontainsaradioisotope,issaidtoberadiolabeledandiscalledaradionuclide.Thespecificactivityofaradionuclideistheamountofradioactivity,BqorCi,permoleofthecompound.Clearly,asradioactivedecayproceeds,thespecificactivityofanyradionuclidedeclines. Photographicfilmcanbeexposedbyalltypesofradiation,andisusedtomonitorexposureofpersonnelworkingwithhighenergyemitters.AvisIBLetrackinacloudorbubblechambercanpickupradioactivity,ascanacalorimeteriftheenergyemittedisquitehigh. Aproblemwithmanymethodsofdetectionisthattheenergyoftheemittermustbehighenoughtotravelsomedistancethroughair.Theparticlesemittedbymanyradionuclides,especially14-Cand3-Hlabeledcompounds,donottravelasignificantdistanceinair,butposeadangerifinternalizedbecauseoftheirproximitytomoleculessuchasDNA.Forexample,abetaparticleemittedbytritiumcannotpenetrateasheetofpaper,yettritiuminthebodyfluidscanposeasignificanthazard.Aliquidscintillationdetectorcanpickupradiationfrom"soft"betaemittersaswellasfromotherradioisotopes.Anionizingparticleisallowedtopassthroughacrystalorliquidphosphor,whichabsorbsitsenergyandre-emitstheenergyasflashesoflight.Usuallytheemittermustbedissolvedinliquidcontainingtheluminescentcompound,sothatthedistancetraveledbytheparticleisveryshort. Inliquidscintillationcounting,thematerialcontainingradioisotopesisdissolvedinanorganicsolventcontaininganaromaticsolute(thescintillant).Whenradioactivedecaytakesplace,theenergyofabetaparticleistransferredbycollisiontoanelectronintheshellofthescintillant,excitingthatelectron.Theelectronthenreturnstoitsgroundstate,releasingaphoton.Theenergytransfercanbefrombetaparticletosolventtoscintillant,ordirectlytothescintillant,andusuallytherearemultiplecollisionsperbparticle.Thenumberofphotonsemittedfollowingeachatomicdisintegrationisproportionaltotheenergyofthereleasedbetaparticle. Nowhereishowthedetectionsystemworks.Thevialisloweredintoadarkchamberwithphotoelectricdetectorsoneachside.Each"flash"receivedbythedetectorscorrespondstooneatomicdisintegration.Thedetectorsareconnected,viaphotomultipliertubes,toamicroprocessorunitthatrecordsnotonlyeachevent,butalsothenumberofphotonsdetectedduringeachevent(brightnessoftheflash).Atbriefintervals,suchas1/100second,theinstrumentcalculatesthenumberofflashesperunittime,displayingthemascountsperminute,orCPM. Unfortunately,therearetwomorelittleproblems.Noinstrumentiscapableofrecordingalloftheatomicdisintegrationswithinascintillationvial.Becauseofthegeometryofthevialandphotoelectricdetectorssomeeventsgoundetected.Themaximumefficiencywithwhichalowenergyemittersuchastritiumcanbedetectedisabout70%.Worseyet,theenergyofsomephotonsisabsorbedbychemicalsinthesolventbeforethephotoncanreachthedetector.Thelatterphenomenonisknownasquenching.Withthechemicalquenchingthatistypicalofmostexperiments,theusualcountingefficiencyfortritiumis30to40%,andsometimesmuchless.Theamountofquenchingcanvaryfromsampletosample,thereforeitisoftennecessarytoestimatetheefficiencyofcountingforeachindividualsample. Rememberthattheamountoflightdetectedisproportionaltotheenergyofthebetaparticlethatwasreleasedbythedisintegratingnucleus.Whenyoupreparetocountsamples,youselectappropriate"windows",thatis,rangesoflightintensitythattheinstrumentwillrecordascounts.Theinstrumentrecordstheamountoflightdetectedfollowinganevent,andifthatamountiswithintheenergyrangeforaparticularwindow,theeventisrecordedasonecount.Itisignoredifitfallsoutsidetheselectedrange.Eachwindowisgivenachannelnumber,andthecountforeachwindowisgivenasCPMforthecorrespondingchannel. Asquenchingtakesplace,theenergyrecordedforeacheventislessthanitwouldbeforanunquenchedsample,sinceforeacheventtheenergyofsomephotonsisabsorbedbeforedetectionispossible.Theenergyspectrumisshiftedtotheleft,andthegreaterthequenchingthegreatertheshift.Astheshifttakesplace,theratioofcountsinchannel2tocountsinchannel1becomessmaller.Thatratioisknownasthesamplechannelsratio,orSCR. CountingefficiencyispositivelyrelatedtotheSCR.TogetaconversionfactorbetweenSCRandefficiency,equalknownamountsoftheisotopeareaddedtoaseriesofvials.Progressivelygreateramountsofaquenchingagent,suchascarbontetrachloride,areaddedtoeachvial.ThevialsarecountedandCPMisdividedbyknownDPMtogetthefractionalefficiencyofcounting.Forexample,ifavialwith20,000DPMoftritiumyields5,000CPM,thefractionalefficiencyofcountingwas5,000/20,000=0.25,thatis,25%oftheatomicdisintegrationsweredetected.FractionalefficiencyisplottedversusSCRtoyieldaquenchcurve.TheinstrumentprintsoutCPMandSCRforeachsample,thereforetogetactualDPMinasampletheinvestigatormust(1)subtractbackgroundCPMfromtheCPMforthesample,(2)determinefractionalefficiencyfromtheSCRforthesample,and(3)dividenetCPMbythefractionalefficiency. Example.Youarecountingsamplescontaining14-C.Sample#1givesyouchannel1CPMof1323.Thebackgroundcountswere23CPMandtheSCRwas0.5.Fromthequenchcurve,anSCRof0.5correspondstoanefficiencyof0.93.Thentheestimatedamountofradioactivityinthesampleis(1323-23)/0.93=1398DPM. Thereareotherproblemsassociatedwiththemeasurementofradioactivitythatarenotsoeasilysolved.However,forsinglelabelexperimentsthequenchcorrectionisallyouneed.Reviewthespecialsafetycautionsforradioisotopework,andyouarereadytogo. Preliminaryinformationmayincludethedate,time,useri.d.,andprogramselected.Commoncountingparametersareusuallylisted.Theparametersmayinclude:numberoftimeseachsampleiscounted;timeperiodofcountingeachsample;numberoftimestheentiresetofsamplesiscounted;typeofquenchcorrection;windowsselected;specialfeaturessuchascriteriaforcuttingshortacountifcountsareveryhigh,orautomaticbackgroundsubtract.Thepreliminaryinformationmustindicatethatthecountingparameterswereappropriateforyourtypeofsamples. Theinformationsuppliedforeachsampletypicallyincludes:samplei.d.,whichmaybepositionnumberinarack,positioninorderofcounting,orboth;channelnumbers(windows)andcorrespondingcountsperminute;timeofcounting;elapsedtimesincetherunwasstarted(thisisimportantforradioisotopeswithveryshorthalflives);samplechannelsratioorothermeasureofquenching.RADIoactiveDecay
Isotopesofagivenelementhavenucleiwiththesamenumberofprotonsbutdifferentnumbersofneutrons.Someisotopesarestable,howeverradioisotopesareunstableanddisintegrate,withtheemissionofthreemaintypesofradiation.Methodsofdetection
Themethodemployedtodetectradiationdependsonthetypeofemitterandtheintendedpurposeofdetection.Themostwellknownmethodofdetectingradiationiswithanionizationchamber.Ahighenergyparticlecandislodgeelectronsfromtheatomsitstrikes,producingpairsofions.Particlesareallowedtopassbetweenparallelplates,onewithapositivechargeandonewithanegativecharge.Asionizationtakesplacetheionseachmovetotheplatewiththeoppositecharge,producingacurrent.Thecurrentisreadonameter.TheGeiger-Muellercounterisbasedontheionizationdetectionprinciple.Liquidscintillationcounting
Theamountofkineticenergyinabetaparticlediffersfromonedecaytothenext.However,eachradioisotopehasatypicalenergyspectrum,thatis,apredictablerangeofenergies.Typicalenergyspectrafordifferentradioisotopescanberadicallydifferentinshapeandmagnitude,aswiththecommonlyused14-Cand3-H.

BackgroundandQuenching
Nodetectionsystemperfect,ofcourse.Inliquidscintillationcounting,cosmicrays,betaparticlesfromdecayingpotassiumintheglassvial,spontaneousdischargesfromtheverysensitivephotodetectors,andchemicalsdissolvedinthescintillationfluidallcancontributetospontaneousflashesoflightthatarerecordedascounts.TheCPMattributabletosuchsourcesarecalledbackground.Backgroundcountsareoftensolowrelativetotheactivitybeingmeasuredthattheyareignored.Howeverifthenumberof"real"countsislow,backgroundcountscancontributetoexperimentalerror.Itisagoodpracticetoincludeavialcontainingeverythingexceptaddedradioactivityasacontroltodeterminethebackgroundlevel.BackgroundCPMarethensubtracteddirectlyfromtheCPMfortheexperimentalsamples.

Thescintillationcounterprintout
Modernscintillationcountershaveaconveyorsystemthatautomaticallyfeedssamplesinorderintothecountingchamber.Aseachsampleiscountedtherelevantinformationisprinted.Atypicalprintoutincludespreliminaryinformationfollowedbyspecificinformationonasamplebysamplebasis.Everymanufacturerusesadifferentsystemoftermsandabbreviations,soeitheryouwillneedaccesstotheinstrumentmanualortheprintoutfromyourinstrumentwillhavetobetranslatedbyanexperiencedindividual.
================ 蚂蚁淘在线 ================
免责声明:本文仅代表作者个人观点,与本网无关。其创作性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不做任何保证或承诺,请读者仅作参考,并请自行核实相关内容
版权声明:未经蚂蚁淘在线授权不得转载、摘编或利用其他方式使用上述作品。已经经本网授权使用作品的,应该授权范围内使用,并注明“来源:蚂蚁淘在线”。违反上述声明者,本网将追究其相关法律责任。

