- Cell Technology_Cell Technology
- Cell Signaling Technology(CST)抗体的亲情包装和防伪码,购买认准...
- 朗文教育喜迎开学季 金秋钜惠 震撼来袭!在线订票互动吧
- celltechnology|产品目录
- Cell Technology 品牌 代理
- 玉博|celltechnology公司|产品资讯|蚂蚁淘进口试剂平行进口
- 斗鱼 每个人的直播平台
- 斗鱼 每个人的直播平台
- Cell TechnologyELISA 试剂盒
- NBS1缺 失突变导致小颅畸形的分子机制分析
- 求加精: 进口品牌清关代理,有谁知道吗?Cellgs品牌咨询
- ...in the very low density lipoproteins of human plasma.
- Description
- Additional Information
- Readable Documents
- Assay Principle
- Reviews
Key Benefits
- Non-cytotoxic assay arrests further apoptotic activity via caspase inhibition.
- Cell permeablity permits direct visualization of cytosolic apoptotic events.
- Apoptotic cell population does not diminish over time.
- Add reagent directly to cells. No special buffer or media needed. No preparation of cell lysates required. Simple wash procedure.
- Works in diverse cell lines: human, rodent, Drosophila.
- Can be performed in conjunction with Annexin staining, TUNEL, antibody staining, or with other APO LOGIX reagents on the same population of cells.
- Permits high through-put screening. Protocol can be adapted for ex vivo as well as in situ experiments.
- Applications – Works with fluorescence microscope, 96-well fluorescence plate readers
- Yields both quantitative and qualitative results. Gives strong signal with little background noise.
Additional information
| Kit Size | 25, 100 |
|---|
APO LOGIX SR kits contain a generic sulforhodamine labeled caspase inhibitor (sulforhodamine-peptide-fluoromethyl ketone). This reagent is cell permeable and is used on whole cells to detect apoptosis. Apoptotic cells are detected by a fluorescence plate reader or fluorescence microscope using an excitation source at 550nm and measuring emission at 595nm. The assay takes about 1 hr to completeAPO LOGIX Sulforhodamine
Jurkat cells stimulated with staurosporine for 2 hours and then labeled with SR-VAD-FMK.
Left side: 30X phase contrast
Right side: 30X fluorescence microscope. Excitation: 550nm emission > 580nm.APO LOGIX Sulforhodamine
Jurkat cells stimulated with staurosporine for 2 hours. Cells were then stained with SR-VAD-FMK for 1 hour and read in a 96 well fluorescence plate reader.
| Document Title |
| SR protocol |
| SRVADFMK Datasheet |
| msds.Apologix |
| Reference |
| Slee, E. A., C. Adrain, and S. J. Martin. 1999. Serial Killers: ordering caspase activation events in apoptosis. Cell Death and Differ. 6:1067-1074. |
| Walker, N. P., R. V. Talanian, K. D. Brady, L. C. Dang, N. J. Bump, C. R. Ferenz, S. Franklin, T. Ghayur, M. C. Hackett and L. D. Hammill. 1994. Crystal Structure of the Cysteine Protease Interleukin-1ß-Converting Enzyme: A (p20/p10)2 Homodimer. Cell 78:343-352. |
| Wilson, K. P., J. F. Black, J. A. Thomson, E. E. Kim, J. P. Griffith, M. A. Navia, M. A. Murcko, S. P. Chambers, R. A. Aldape, S. A. Raybuck, and D. J. Livingston. 1994. Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370: 270-275. |
| Rotonda, J., D. W. Nicholson, K. M. Fazil, M. Gallant, Y. Gareau, M. Labelle, E. P. Peterson, D. M. Rasper, R. Ruel, J. P. Vaillancourt, N. A. Thornberry and J. W. Becker. 1996. The three-dimensional structure of apopain/CPP32, a key mediator of apoptosis. Nature Struct. Biol. 3(7): 619-625. |
| Kumar, S. 1999. Mechanisms mediating caspase activation in cell death. Cell Death and Differ. 6: 1060-1066. |
| Thornberry, N. A., T. A. Rano, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calvo, V. M. Houtszager, P. A. Nordstrom, S. Roy, J. P. Vaillancourt, K. T. Chapman and D. W. Nicholson. 1997. A combinatorial approach defines specificities of members of the caspase SRily and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272(29): 17907-17911. |
| Amstad, P.A., G.L. Johnson, B.W. Lee and S. Dhawan. 2000. An in situ marker for the detection of activated caspases. Biotechnology Laboratory 18: 52-56. |
| Bedner, E., P. Smolewski, P.A. Amstad and Z. Darzynkiewicz. 2000. Activation of caspases measured in situ by binding or fluorochrome-labeled inhibitors of caspases (FLICA): correlation with DNA fragmentation. Exp. Cell Research 259: 308-313. |
| Smolewski, P., E. Bedner, L. Du, T.-C. Hsieh, J. Wu, J. D. Phelps and Z. Darzynkiewicz. 2001. Detection of caspase activation by fluorochrome-labeled inhibitors: multiparameter analysis by laser scanning cytometry. Cytometry 44: 73-82. |
| Ekert, P. G., J. Silke and D. L. Vaux. 1999. Caspase inhibitors. Cell Death and Differ. 6:1081-1086. |
| Carcia-Calvo, M., E. Peterson, B. Leiting, R. Ruel, D. Nicholson and N. Thornberry. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273: 32608-32613. |
| Hirata, H., A. Takahashi, S. Kobayashi, S. Yonehara, H. Sawai, T. Okazaki, K. Yamamoto and M. Sasada. 1998. Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. 187: 587-600 |
| Part# | Reagent | Temperature |
| Part # 679 | Lyophilized SR-VAD-FMK | 2-8C |
| Part # 635 | 10X Wash Buffer | 2-8C |
| Part # 636 | 10X Fixitive | 2-8C |


