academy biomed/[A03]山羊抗人载脂蛋白AI多克隆抗体/1.0 mg/11A-G2b

价格
¥17480.00
货号:11A-G2b
浏览量:127
品牌:academy biomed
服务
全国联保
正品保证
正规发票
签订合同
商品描述
Host Species:Goat
Concentration:1 mg/ml (OD 1.35 / 280 nm)
Antigen:Human Apolipoprotein AI
Purification:Affinity purified
Buffer:75 mM Sodium Phosphate, 75 mM NaCl, 0.5 mM EDTA, 0.02% NaN3, pH 7.2
SpecificitySpecifically binds to human apo AI. Dilution for immunoblot and ELISA range: 1,000 to 80,000.
Use:The antibody can be used for detection of apo AI in plasma and lipoproteins, immunoassays, immunoblots, enzyme conjugation, or biotinylation.
Storage:-20°C for long-term storage, 4°C for short- term storage. Aliquot to avoid repeated freezing and thawing.

 

*These products are for research or manufacturing use only, not for use in human therapeutic or diagnostic applications.

 

Importance

Apo AI comprises approximately 70% of the protein moiety in HDL. It is a single polypeptide chain consisting of 243 amino acid residues without disulfide bound and with glutamic acid as the C-terminal residue and aspartic acid as the N-terminal residue. The molecular weight is reported to be 28 kDa (Brewer et al., 1978).

The roles of Apo AI in HDL function include reverse cholesterol transportation, lipid cholesterol binding, lecithin-cholesterol acyl transferase (LCAT) activation, and receptor binding, which is responsible for cholesterol esterification in plasma. Besides participate in cholesterol metabolism, Apo AI and HDL also suppress neutrophil activation, inhibit bacterial endotoxin, induce trypanosomal lysis, and other physiological activities. (Brouillette et al., 2001)

Apo AI levels may be inversely related to the risk of coronary disease. In previous research, Apo AI may affect diet-induced inflammation by either directly or indirectly altering lipid rafts. (Cheng et al., 2012)

Brewer, H. B., T. Fairwell, A. LaRue, R. Ronan, A. Houser, and T. J. Bronzert. “The amino acid sequence of human Apoa-I, an apolipoprotein isolated from high density lipoproteins.” Biochemical and Biophysical Research Communications 80.3 (1978): 623-30.

Brouillette, Christie G., G.m. Anantharamaiah, Jeffrey A. Engler, and David W. Borhani. "Structural Models of Human Apolipoprotein A-I: A Critical Analysis and Review." Biochimica Et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids (2001): 4-46.

Cheng, Andrew M., Priya Handa, Sanshiro Tateya, Jay Schwartz, Chongren Tang, Poulami Mitra, John F. Oram, Alan Chait, and Francis Kim. "Apolipoprotein A-I Attenuates Palmitate-Mediated NF-κB Activation by Reducing Toll-Like Receptor-4 Recruitment into Lipid Rafts." PLoS ONE 7.3 (2012): e33917.

 

Citations

[A03]2020

Chen, Wei-Yu; Chen, Yun-Fang; Chan, Hua-Cheng; Chung, Ching-Hu; Peng, Hsien-Yu; Ho, Yu-Cheng et al. (2020): Role of apolipoprotein E in electronegative low-density lipoprotein-induced mitochondrial dysfunction in cardiomyocytes. In Metabolism: Clinical and Experimental 107, p. 154227. DOI: 10.1016/j.metabol.2020.154227.

[A03]2020Kelly, Una L.; Grigsby, Daniel; Cady, Martha A.; Landowski, Michael; Skiba, Nikolai P.; Liu, Jian et al. (2020): High density lipoproteins are a potential therapeutic target for age-related macular degeneration. J. Biol. Chem. DOI: 10.1074/jbc.RA119.012305.
[A03]2020Koch, Manja; DeKosky, Steven T.; Goodman, Matthew; Sun, Jiehuan; Furtado, Jeremy D.; Fitzpatrick, Annette L. et al. (2020): High density lipoprotein and its apolipoprotein-defined subspecies and risk of dementia. J. Lipid Res. 61 (3), pp. 445–454. DOI: 10.1194/jlr.P119000473.
[A03]2020Lee, An-Sheng; Wang, Yu-Chen; Chang, Shih-Sheng; Lo, Ping-Hang; Chang, Chia-Ming; Lu, Jonathan et al. (2020): Detection of a High Ratio of Soluble to Membrane-Bound LOX-1 in Aspirated Coronary Thrombi From Patients With ST-Segment-Elevation Myocardial Infarction. Journal of the American Heart Association 9 (2), e014008. DOI: 10.1161/JAHA.119.014008.
[A03]2019Gonen, Ayelet; Choi, Soo-Ho; Miu, Phuong; Agatisa-Boyle, Colin; Acks, Daniel; Taylor, Angela M. et al. (2019): A monoclonal antibody to assess oxidized cholesteryl esters associated with apoAI and apoB-100 lipoproteins in human plasma. J. Lipid Res. 60 (2), pp. 436–445. DOI: 10.1194/jlr.D090852.
[A03]2019Koch, Manja; Fitzpatrick, Annette L.; Rapp, Stephen R.; Nahin, Richard L.; Williamson, Jeff D.; Lopez, Oscar L. et al. (2019): Alcohol Consumption and Risk of Dementia and Cognitive Decline Among Older Adults With or Without Mild Cognitive Impairment. JAMA Network Open 2 (9), e1910319. DOI: 10.1001/jamanetworkopen.2019.10319.
[A03]2019Landowski, Michael; Kelly, Una; Klingeborn, Mikael; Groelle, Marybeth; Ding, Jin-Dong; Grigsby, Daniel; Bowes Rickman, Catherine (2019): Human complement factor H Y402H polymorphism causes an age-related macular degeneration phenotype and lipoprotein dysregulation in mice. Proceedings of the National Academy of Sciences of the United States of America 116 (9), pp. 3703–3711. DOI: 10.1073/pnas.1814014116.
[A03]2019Morton, Allyson M.; Furtado, Jeremy D.; Mendivil, Carlos O.; Sacks, Frank M. (2019): Dietary unsaturated fat increases HDL metabolic pathways involving apoE favorable to reverse cholesterol transport. JCI Insight 4 (7). DOI: 10.1172/jci.insight.124620.
[A03]2019Pagano, Sabrina; Magenta, Alessandra; D"Agostino, Marco; Martino, Francesco; Barillà, Francesco; Satta, Nathalie et al. (2019): Anti-ApoA-1 IgGs in Familial Hypercholesterolemia Display Paradoxical Associations with Lipid Profile and Promote Foam Cell Formation. Journal of Clinical Medicine 8 (12). DOI: 10.3390/jcm8122035.
[A03]2019Schilcher, Irene; Ledinski, Gerhard; Radulović, Snježana; Hallström, Seth; Eichmann, Thomas; Madl, Tobias et al. (2019): Endothelial lipase increases antioxidative capacity of high-density lipoprotein. Biochimica et biophysica acta. Molecular and Cell Biology of Lipids 1864 (10), pp. 1363–1374. DOI: 10.1016/j.bbalip.2019.06.011.
[A03]2018Sato, Megumi; Ohkawa, Ryunosuke; Low, Hann; Nishimori, Madoka; Okubo, Shigeo; Yoshimoto, Akira et al. (2019): Serum amyloid A does not affect high-density lipoprotein cholesterol measurement by a homogeneous assay. In Clinical Biochemistry 63, pp. 97–101. DOI: 10.1016/j.clinbiochem.2018.10.008.
[A03]2018Aroner, Sarah A.; Koch, Manja; Mukamal, Kenneth J.; Furtado, Jeremy D.; Stein, James H.; Tattersall, Matthew C. et al. (2018): High‐Density Lipoprotein Subspecies Defined by Apolipoprotein C‐III and Subclinical Atherosclerosis Measures: MESA (The Multi‐Ethnic Study of Atherosclerosis). In Journal of the American Heart Association 7 (6), p. 40. DOI: 10.1161/JAHA.117.007824.
[A03]2018Furtado, Jeremy D.; Yamamoto, Rain; Melchior, John T.; Andraski, Allison B.; Gamez-Guerrero, Maria; Mulcahy, Patrick et al. (2018): Distinct Proteomic Signatures in 16 HDL (High-Density Lipoprotein) Subspecies. In Arterioscler Thromb Vasc Biol. 38 (12), pp. 2827–2842. DOI: 10.1161/ATVBAHA.118.311607.
[A03]2018Koch, Manja; DeKosky, Steven T.; Fitzpatrick, Annette L.; Furtado, Jeremy D.; Lopez, Oscar L.; Kuller, Lewis H. et al. (2018): Apolipoproteins and Alzheimer"s pathophysiology. In Alzheimer"s & Dementia (Amsterdam, Netherlands) 10, pp. 545–553. DOI: 10.1016/j.dadm.2018.07.001.
[A03]2018Morton, Allyson M.; Koch, Manja; Mendivil, Carlos O.; Furtado, Jeremy D.; Tjønneland, Anne; Overvad, Kim et al. (2018): Apolipoproteins E and CIII interact to regulate HDL metabolism and coronary heart disease risk. In JCI Insight 3 (4). DOI: 10.1172/jci.insight.98045.
[A03]2018Satta, Nathalie; Pagano, Sabrina; Montecucco, Fabrizio; Gencer, Baris; Mach, François; Kaiser, Laurent et al. (2018): Anti-apolipoprotein A-1 autoantibodies are associated with immunodeficiency and systemic inflammation in HIV patients. In The Journal of Infection 76 (2), pp. 186–195. DOI: 10.1016/j.jinf.2017.11.008.
[A03]2017Gillard, Baiba K.; Bassett, G. Randall; Gotto, Antonio M.; Rosales, Corina; Pownall, Henry J. (2017): Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester. In J. Biol. Chem. 292 (21), pp. 8864–8873. DOI: 10.1074/jbc.M117.781963.
[A03]2017Ikeda, Toru; Shinohata, Ryoko; Murakami, Masaaki; Hina, Kazuyoshi; Kamikawa, Shigeshi; Hirohata, Satoshi et al. (2017): A rapid and precise method for measuring plasma apoE-rich HDL using polyethylene glycol and cation-exchange chromatography: a pilot study on the clinical significance of apoE-rich HDL measurements. In Clinica Chimica Acta; International Journal of Clinical Chemistry 465, pp. 112–118. DOI: 10.1016/j.cca.2016.12.016.
[A03]2017Koch, Manja; Furtado, Jeremy D.; Jiang, Gordon Z.; Gray, Brianna E.; Cai, Tianxi; Sacks, Frank et al. (2017): Associations of anthropometry and lifestyle factors with HDL subspecies according to apolipoprotein C-III. In Journal of Lipid Research 58 (6), pp. 1196–1203. DOI: 10.1194/jlr.P073288.
[A03]2016Chen, Xueying; Bakillah, Ahmed; Zhou, Liye; Pan, Xiaoyue; Hoepfner, Florian; Jacob, Marrit et al. (2016): Nitrated apolipoprotein AI/apolipoprotein AI ratio is increased in diabetic patients with coronary artery disease. In Atherosclerosis 245, pp. 12–21. DOI: 10.1016/j.atherosclerosis.2015.11.021.
[A03]2016Ichimura, Naoya; Sato, Megumi; Yoshimoto, Akira; Yano, Kouji; Ohkawa, Ryunosuke; Kasama, Takeshi; Tozuka, Minoru (2016): High-Density Lipoprotein Binds to Mycobacterium avium and Affects the Infection of THP-1 Macrophages. In Journal of Lipids 2016, p. 4353620. DOI: 10.1155/2016/4353620.
[A03]2016Ma, Weilie; Lin, Margarita; Ding, Hang; Lin, Guorong; Zhang, Zhizhen (2016): β-COP as a Component of Transport Vesicles for HDL Apolipoprotein-Mediated Cholesterol Exocytosis. In PloS One 11 (3), e0151767. DOI: 10.1371/journal.pone.0151767.
[A03]2016Negi, Priyanka; Lövgren, Janita; Malmi, Päivi; Sirkka, Nina; Metso, Jari; Huovinen, Tuomas et al. (2016): Identification and analysis of anti-HDL scFv-antibodies obtained from phage display based synthetic antibody library. In Clinical Biochemistry 49 (6), pp. 472–479. DOI: 10.1016/j.clinbiochem.2015.11.020.
[A03]2016Singh, Sasha A.; Andraski, Allison B.; Pieper, Brett; Goh, Wilson; Mendivil, Carlos O.; Sacks, Frank M.; Aikawa, Masanori (2016): Multiple apolipoprotein kinetics measured in human HDL by high-resolution/accurate mass parallel reaction monitoring. In J. Lipid Res. 57 (4), pp. 714–728. DOI: 10.1194/jlr.D061432.
[A03]2016Yano, Kouji; Ohkawa, Ryunosuke; Sato, Megumi; Yoshimoto, Akira; Ichimura, Naoya; Kameda, Takahiro et al. (2016): Cholesterol Efflux Capacity of Apolipoprotein A-I Varies with the Extent of Differentiation and Foam Cell Formation of THP-1 Cells. In Journal of Lipids 2016, p. 9891316. DOI: 10.1155/2016/9891316.
[A03]2016Yassine, Hussein N.; Feng, Qingru; Chiang, Jiarong; Petrosspour, Larissa M.; Fonteh, Alfred N.; Chui, Helena C.; Harrington, Michael G. (2016): ABCA1-Mediated Cholesterol Efflux Capacity to Cerebrospinal Fluid Is Reduced in Patients With Mild Cognitive Impairment and Alzheimer"s Disease. In Journal of the American Heart Association 5 (2). DOI: 10.1161/JAHA.115.002886.
[A03]2015Kameda, Takahiro; Ohkawa, Ryunosuke; Yano, Kouji; Usami, Yoko; Miyazaki, Akari; Matsuda, Kazuyuki et al. (2015): Effects of Myeloperoxidase-Induced Oxidation on Antiatherogenic Functions of High-Density Lipoprotein. In Journal of Lipids 2015 (9), pp. 1–8. DOI: 10.1155/2015/592594.
[A03]2015Montecucco, Fabrizio; Braunersreuther, Vincent; Burger, Fabienne; Lenglet, Sébastien; Pelli, Graziano; Carbone, Federico et al. (2015): Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. In Thromb Haemost 114 (08), pp. 410–422. DOI: 10.1160/TH14-12-1039.
[A03]2015Pagano, Sabrina; Gaertner, Hubert; Cerini, Fabrice; Mannic, Tiphaine; Satta, Nathalie; Teixeira, Priscila Camillo et al. (2015): The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease? In PLoS ONE 10 (7), e0132780. DOI: 10.1371/journal.pone.0132780.
[A03]2014Kalakech, Hussein; Hibert, Pierre; Prunier-Mirebeau, Delphine; Tamareille, Sophie; Letournel, Franck; Macchi, Laurent et al. (2014): RISK and SAFE Signaling Pathway Involvement in Apolipoprotein A-I-Induced Cardioprotection. In PLoS ONE 9 (9), e107950. DOI: 10.1371/journal.pone.0107950.
[A03]2014Miyazaki, Akari; Sagae, Nozomi; Usami, Yoko; Sato, Megumi; Kameda, Takahiro; Yoshimoto, Akira et al. (2014): N-homocysteinylation of apolipoprotein A-I impairs the protein’s antioxidant ability but not its cholesterol efflux capacity. In Biological Chemistry 395 (6). DOI: 10.1515/hsz-2013-0262.
[A03]2014Talayero, Beatriz; Wang, Liyun; Furtado, Jeremy; Carey, Vincent J.; Bray, George A.; Sacks, Frank M. (2014): Obesity favors apolipoprotein E- and C-III-containing high density lipoprotein subfractions associated with risk of heart disease. In J. Lipid Res. 55 (10), pp. 2167–2177. DOI: 10.1194/jlr.M042333.
[A03]2014Teixeira, Priscila Camillo; Ducret, Axel; Ferber, Philippe; Gaertner, Hubert; Hartley, Oliver; Pagano, Sabrina et al. (2014): Definition of Human Apolipoprotein A-I Epitopes Recognized by Autoantibodies Present in Patients with Cardiovascular Diseases. In J. Biol. Chem. 289 (41), pp. 28249–28259. DOI: 10.1074/jbc.M114.589002.
[A03]2012Chen, Zhu; Wang, Sheng-Ping; Krsmanovic, Mihajlo L.; Castro-Perez, Jose; Gagen, Karen; Mendoza, Vivienne et al. (2012): Small molecule activation of lecithin cholesterol acyltransferase modulates lipoprotein metabolism in mice and hamsters. In Metabolism 61 (4), pp. 470–481. DOI: 10.1016/j.metabol.2011.08.006.
[A03]2012Kameda, Takahiro; Usami, Yoko; Shimada, Saki; Haraguchi, Go; Matsuda, Kazuyuki; Sugano, Mitsutoshi et al. (2012): Determination of myeloperoxidase-induced apoAI-apoAII heterodimers in high-density lipoprotein. In Annals of Clinical and Laboratory Science 42 (4), pp. 384–391.
[A03]2012Nagao, Kohjiro; Kimura, Yasuhisa; Ueda, Kazumitsu (2012): Lysine residues of ABCA1 are required for the interaction with apoA-I. In Biochimica et Biophysica Acta 1821 (3), pp. 530–535. DOI: 10.1016/j.bbalip.2011.06.024.
[A03]2012Pagano, S.; Satta, N.; Werling, D.; Offord, V.; Moerloose, P. de; Charbonney, E. et al. (2012): Anti-apolipoprotein A-1 IgG in patients with myocardial infarction promotes inflammation through TLR2/CD14 complex. In Journal of Internal Medicine 272 (4), pp. 344–357. DOI: 10.1111/j.1365-2796.2012.02530.x.
[A03]2012Shen, Xun; Wang, Wei; Wang, Liangsu; Houde, Caroline; Wu, Weizhen; Tudor, Matt et al. (2012): Identification of genes affecting apolipoprotein B secretion following siRNA-mediated gene knockdown in primary human hepatocytes. In Atherosclerosis 222 (1), pp. 154–157. DOI: 10.1016/j.atherosclerosis.2012.02.012.
[A03]2012Usami, Yoko; Kobayashi, Yukihiro; Kameda, Takahiro; Miyazaki, Akari; Matsuda, Kazuyuki; Sugano, Mitsutoshi et al. (2012): Identification of sites in apolipoprotein A-I susceptible to chymase and carboxypeptidase A digestion. In Bioscience Reports 33 (1), pp. 49–56. DOI: 10.1042/BSR20120094.
[A03]2011Montecucco, Fabrizio; Vuilleumier, Nicolas; Pagano, Sabrina; Lenglet, Sébastien; Bertolotto, Maria; Braunersreuther, Vincent et al. (2011): Anti-Apolipoprotein A-1 auto-antibodies are active mediators of atherosclerotic plaque vulnerability. In European Heart Journal 32 (4), pp. 412–421. DOI: 10.1093/eurheartj/ehq521.
[A03]2011Rosales, Corina; Tang, Daming; Gillard, Baiba K.; Courtney, Harry S.; Pownall, Henry J. (2011): Apolipoprotein E Mediates Enhanced Plasma High-Density Lipoprotein Cholesterol Clearance by Low-Dose Streptococcal Serum Opacity Factor via Hepatic Low-Density Lipoprotein Receptors In Vivo. In Arterioscler Thromb Vasc Biol. 31 (8), pp. 1834–1841. DOI: 10.1161/ATVBAHA.111.224360.
[A03]2011Usami, Yoko; Matsuda, Kazuyuki; Sugano, Mitsutoshi; Ishimine, Nau; Kurihara, Yuriko; Sumida, Tamaki et al. (2011): Detection of chymase-digested C-terminally truncated apolipoprotein A-I in normal human serum. In Journal of Immunological Methods 369 (1-2), pp. 51–58. DOI: 10.1016/j.jim.2011.04.002.
[A03]2011Vickers, Kasey C.; Palmisano, Brian T.; Shoucri, Bassem M.; Shamburek, Robert D.; Remaley, Alan T. (2011): MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. In Nat Cell Biol 13 (4), pp. 423–433. DOI: 10.1038/ncb2210.
[A03]2011Wang, Yanan; Berbée, Jimmy F. P.; Stroes, Erik S.; Smit, Johannes W. A.; Havekes, Louis M.; Romijn, Johannes A.; Rensen, Patrick C. N. (2011): CETP expression reverses the reconstituted HDL-induced increase in VLDL. In J. Lipid Res. 52 (8), pp. 1533–1541. DOI: 10.1194/jlr.M016659.
[A03]2010Carballo-Jane, Ester; Chen, Zhu; O’Neill, Edward; Wang, Jun; Burton, Charlotte; Chang, Ching H. et al. (2010): ApoA-I mimetic peptides promote pre-β HDL formation in vivo causing remodeling of HDL and triglyceride accumulation at higher dose. In Bioorganic & Medicinal Chemistry 18 (24), pp. 8669–8678. DOI: 10.1016/j.bmc.2010.09.074.
[A03]2010Gruaz, Lyssia; Delucinge-Vivier, Céline; Descombes, Patrick; Dayer, Jean-Michel; Burger, Danielle (2010): Blockade of T Cell Contact-Activation of Human Monocytes by High-Density Lipoproteins Reveals a New Pattern of Cytokine and Inflammatory Genes. In PLoS ONE 5 (2), e9418. DOI: 10.1371/journal.pone.0009418.
[A03]2010Ishimine, N.; Usami, Y.; Nogi, S.; Sumida, T.; Kurihara, Y.; Matsuda, K. et al. (2010): Identification of N-homocysteinylated apolipoprotein AI in normal human serum. In Annals of Clinical Biochemistry 47 (Pt 5), pp. 453–459. DOI: 10.1258/acb.2010.010035.
[A03]2010Vuilleumier, N.; Rossier, M. F.; Pagano, S.; Python, M.; Charbonney, E.; Nkoulou, R. et al. (2010): Anti-apolipoprotein A-1 IgG as an independent cardiovascular prognostic marker affecting basal heart rate in myocardial infarction. In Thromb Haemost 31 (7), pp. 815–823. DOI: 10.1093/eurheartj/ehq055.
[A03]2010Vuilleumier, Nicolas; Bas, Sylvette; Pagano, Sabrina; Montecucco, Fabrizio; Guerne, Pierre-André; Finckh, Axel et al. (2010): Anti-apolipoprotein A-1 IgG predicts major cardiovascular events in patients with rheumatoid arthritis. In Arthritis and Rheumatism 62 (9), pp. 2640–2650. DOI: 10.1002/art.27546.
[A03]2009Kim, Soo In; Shin, Duckhyang; Lee, Hyeon; Ahn, Byung-Yoon; Yoon, Yeup; Kim, Meehyein (2009): Targeted delivery of siRNA against hepatitis C virus by apolipoprotein A-I-bound cationic liposomes. In Journal of Hepatology 50 (3), pp. 479–488. DOI: 10.1016/j.jhep.2008.10.029.
[A03]2009Vries-van der Weij, Jitske de; Haan, Willeke de; Hu, Lihui; Kuif, Maarten; Oei, H. Ling D. W.; van der Hoorn, José W. A. et al. (2009): Bexarotene Induces Dyslipidemia by Increased Very Low-Density Lipoprotein Production and Cholesteryl Ester Transfer Protein-Mediated Reduction of High-Density Lipoprotein. In Endocrinology 150 (5), pp. 2368–2375. DOI: 10.1210/en.2008-1540.
[A03]2008Chung, Kyung Min; Cha, Sun-Shin; Jang, Sung Key (2008): A novel function of karyopherin beta3 associated with apolipoprotein A-I secretion. In Molecules and Cells 26 (3), pp. 291–298.
[A03]2008Deng, Ting; Ji, Wei; Lian, Ji-Hong; Guo, Lei; Hu, Wei-Rong; Qian, Ming; Gong, Bang-qiang (2008): Identifying Natural Derived Upregulators of Human ApoA-I Expression via a Cell-Based Drug Screening System. In Pharmaceutical Biology 46 (9), pp. 610–615. DOI: 10.1080/13880200802179584.
[A03]2008He, Yubin; Greene, Diane J.; Kinter, Michael; Morton, Richard E. (2008): Control of cholesteryl ester transfer protein activity by sequestration of lipid transfer inhibitor protein in an inactive complex. In J. Lipid Res. 49 (7), pp. 1529–1537. DOI: 10.1194/jlr.M800087-JLR200.
[A03]2008Marchi, Nicola; Mazzone, Peter; Fazio, Vincent; Mekhail, Tarek; Masaryk, Thomas; Janigro, Damir (2008): ProApolipoprotein A1. In Cancer 112 (6), pp. 1313–1324. DOI: 10.1002/cncr.23314.
[A03]2007Kim, Soo In; Shin, Duckhyang; Choi, Tae Hyun; Lee, Jong Chan; Cheon, Gi-Jeong; Kim, Ki-Yong et al. (2007): Systemic and specific delivery of small interfering RNAs to the liver mediated by apolipoprotein A-I. In Molecular therapy : the Journal of the American Society of Gene Therapy 15 (6), pp. 1145–1152. DOI: 10.1038/sj.mt.6300168.
[A03]2007Matsuura, Fumihiko; Oku, Hiroyuki; Koseki, Masahiro; Sandoval, Jose C.; Yuasa-Kawase, Miyako; Tsubakio-Yamamoto, Kazumi et al. (2007): Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. In Biochemical and Biophysical Research Communications 358 (4), pp. 1091–1095. DOI: 10.1016/j.bbrc.2007.05.040.
[A03]2006Guo, Lei; Hu, Wei-Rong; Lian, Ji-Hong; Ji, Wei; Deng, Ting; Qian, Ming; Gong, Bang-qiang (2006): Anti-hyperlipidemic properties of CM108 (a flavone derivative) in vitro and in vivo. In European Journal of Pharmacology 551 (1-3), pp. 80–86. DOI: 10.1016/j.ejphar.2006.08.048.
[A03]2006Thompson, Patricia A.; Kitchens, Richard L. (2006): Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. In J.I. 177 (7), pp. 4880–4887. DOI: 10.4049/jimmunol.177.7.4880.
[A03]2005Nedelkov, Dobrin; Kiernan, Urban A.; Niederkofler, Eric E.; Tubbs, Kemmons A.; Nelson, Randall W. (2005): Investigating diversity in human plasma proteins. In Proc Natl Acad Sci USA 102 (31), pp. 10852–10857. DOI: 10.1073/pnas.0500426102.
[A03]2005Tsujita, Maki; Wu, Cheng-Ai; Abe-Dohmae, Sumiko; Usui, Shinichi; Okazaki, Mitsuyo; Yokoyama, Shinji (2005): On the hepatic mechanism of HDL assembly by the ABCA1/apoA-I pathway. In J. Lipid Res. 46 (1), pp. 154–162. DOI: 10.1194/jlr.M400402-JLR200.
[A03]2004Gallagher, James W.; Weinberg, Richard B.; Shelness, Gregory S. (2004): apoA-IV tagged with the ER retention signal KDEL perturbs the intracellular trafficking and secretion of apoB. In J. Lipid Res. 45 (10), pp. 1826–1834. DOI: 10.1194/jlr.M400188-JLR200.
[A03]2004Pastore, Lucio; Belalcazar, L. Maria; Oka, Kazuhiro; Cela, Racel; Lee, Brendan; Chan, Lawrence; Beaudet, Arthur L. (2004): Helper-dependent adenoviral vector-mediated long-term expression of human apolipoprotein A-I reduces atherosclerosis in apo E-deficient mice. In Gene 327 (2), pp. 153–160. DOI: 10.1016/j.gene.2003.11.024.
[A03]2003Niederkofler, Eric E.; Tubbs, Kemmons A.; Kiernan, Urban A.; Nedelkov, Dobrin; Nelson, Randall W. (2003): Novel mass spectrometric immunoassays for the rapid structural characterization of plasma apolipoproteins. In J. Lipid Res. 44 (3), pp. 630–639. DOI: 10.1194/jlr.D200034-JLR200.
[A03]2003Yang, Chao-Yuh; Raya, Joe L.; Chen, Hsin-Hung; Chen, Chu-Huang; Abe, Yasunori; Pownall, Henry J. et al. (2003): Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. In Arterioscler Thromb Vasc Biol. 23 (6), pp. 1083–1090. DOI: 10.1161/01.ATV.0000071350.78872.C4.
[A03]2001Yuhanna, I. S.; Zhu, Y.; Cox, B. E.; Hahner, L. D.; Osborne-Lawrence, S.; Lu, P. et al. (2001): High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. In Nature Medicine 7 (7), pp. 853–857. DOI: 10.1038/89986.
academy biomed产品信息-载脂蛋白脂蛋白和载脂蛋白的一般信息血浆脂蛋白类别可以根据其分离的密度来定义,包括高(HDL),低(LDL),中间(IDL),极低密度脂蛋白(VLDL)和乳糜微粒。通常,脂蛋白颗粒的大小范围为10至1000 nm。它们由含有胆固醇酯,甘油三酸酯,脂肪酸和脂溶性维生素的疏水核组成。周围的亲水层由各种载脂蛋白,磷脂和胆固醇组成。载脂蛋白可以通过从脂蛋白脱脂而分离,并且已经建立了许多制备方法,例如凝胶过滤或DEAE色谱法。 脂蛋白 载脂蛋白高密度脂蛋白apoAI,AII,AIV,apoCI,CII,CIII,apoD和apoE低密度脂蛋白载脂蛋白B-100极低密度脂蛋白apoB-100,apoCI,CII,CIII和apoE乳糜微粒apoAI,AII,AIV,apoB-48,apoCI,CII,CIII,apoE和apoH 1.载脂蛋白AI(ApoAI)ApoAI约占HDL中蛋白质部分的70%。它是一条单链多肽,由243个氨基酸组成,没有二硫键结合,谷氨酸为C末端残基,天冬氨酸为N末端残基。据报道分子量为28kDa(Brewer等,1978)。ApoAI激活卵磷脂-胆固醇(LCAT)酰基转移酶,该酶负责血浆中的胆固醇酯化。ApoAI水平可能与冠状动脉疾病的风险成反比。 2.载脂蛋白AII(ApoAII)ApoAII在HDL中占ApoAI的25%。它在人血浆中以77条氨基酸残基的2条相同链的二聚体形式存在,并通过二硫键连接。据报道,单链的分子量为8.7kDa(Brewer等,1972)。对小鼠的研究报道,apoAII可能具有促动脉粥样硬化作用(Warden等,1993)。然而,大型欧洲前瞻性研究中的病例对照研究表明,血浆apoAII浓度与冠心病事件密切相关(Birjmohun等,2007)。 3.载脂蛋白B(ApoB)ApoB在人血浆中以两种亚型存在,即ApoB-48(Chen等,1987)和ApoB-100(Wei等,1985,Yang等,1986a; 1989a,b; 1990; Chen等,1990)。 1986; Yang等,1990; Yang和Pownall,1992)。ApoB-100是LDL受体的主要生理配体。ApoB100是一种大型单体蛋白,包含4536个氨基酸(分子量515 kDa,Yang等,1986b)。ApoB-100在肝脏中合成,是VLDL组装所必需的。在去除apoA,E和C后,在LDL和VLDL中发现了它。乳糜微粒及其残留物中存在ApoB-48。它对于膳食脂质的肠道吸收至关重要。ApoB水平与冠心病的风险相关。ApoB-48在小肠中合成。 4.载脂蛋白CI(ApoCI)ApoCI包含57个氨基酸残基,mw为6.6 kDa(Jackson等,1974)。已经发现ApoCI可以激活LCAT(Liu和Subbaiah 1993)并抑制胆固醇酯转移酶,该酶可能调节几种脂肪酶(Poensgen,1990; Conde-Knape等,2002; Berbee等,2005)。 5.载脂蛋白CII(ApoCII)ApoCII包含78个氨基酸残基。mw为8.5 kDa(Jackson等,1977)。ApoCII激活脂蛋白脂肪酶,该酶水解乳糜微粒中三酰基甘油中的脂肪酸。 6.载脂蛋白CIII(ApoCIII)ApoCIII包含79个氨基酸残基。mw为8.7 kDa(Brewer等,1974)。它可能会抑制apoCIII激活脂蛋白脂肪酶。ApoCIII是循环中含apoB和含apoAI的脂蛋白的组成部分。ApoCIII在调节VLDL,IDL和LDL的血浆代谢中起着关键作用,主要是通过抑制受体介导的肝脏对这些脂蛋白的摄取(Sehayek和Eisenberg 1991,Aalto-Setala等人,1992,Zheng等人。 ,2007) 7.载脂蛋白E(ApoE)ApoE包含299个氨基酸残基。它是一种34-37 kDa的糖基化蛋白(Rall等,1983)。ApoE与甘油三酸酯,磷脂,胆固醇酯和胆固醇在细胞内外的转运有关,并且是LDL受体的配体。ApoE也与免疫和神经变性有关。已经发现抑制淋巴细胞增殖。已发现晚期家族性和偶发性阿尔茨海默病患者的三种常见ApoE亚型之一ApoE4发生率更高。已在阿尔茨海默氏病患者的老年斑和神经原纤维缠结中检测到ApoE4亚型。ApoE4与乳糜微粒残留的快速清除和总胆固醇水平升高有关。 8.载脂蛋白(a)[载脂蛋白(a)]人脂蛋白[a],Lp [a]的血浆浓度与冠状动脉疾病高度相关。Lp [a]的蛋白质部分apoLp [a]由两个载脂蛋白apo [a]和apoB-100组成,它们通过一个或多个二硫键连接。Apo [a]是Lp [a]特有的蛋白质,以多态性形式存在,其表观分子量从419 kDa到838 kDa不等(Gaubatz等,1983; 1990,1993)。 9.纤溶酶原纤溶酶原包含810个氨基酸残基。它是分子量为90 kDa的单链糖蛋白(Robbins等,1967),可溶于水。由经认证测试显示对HBsAg以及HIV和HCV抗体呈阴性的血浆制备。纤溶酶原是蛋白酶纤溶酶的无活性前体。纤溶酶原通过组织纤溶酶原激活物(tPA)的作用被激活,后者主要激活纤溶酶的纤溶活性(血栓溶解),而尿激酶纤溶酶原激活物(uPA)与细胞外基质重塑和细胞迁移有关。 10. C反应蛋白(CRP)人C反应蛋白(CRP)是预测未来心血管事件(如心脏病和中风)的重要生物标志物(Koenig等,1999; Jenny等,2007; Kabagambe等。2011)。CRP是肝脏产生的急性期蛋白。它是五味素蛋白家族的成员,具有五个相同的非糖基化亚基,每个亚基具有206个氨基酸(mw 23 kDa)(Agrawal等,2009)。在炎症的其他标志物中,CRP与心血管事件之间的关联最强(Marsik等,2008; Kones等,2010)。临床研究表明,不稳定型心绞痛和CRP升高的患者的冠心病死亡率明显高于CRP升高的患者。它是检测处于斑块性高风险的个体的重要生物标志物。 11.伊里辛运动诱导型肌动蛋白鸢尾素(Boström等人,2012)是通过从跨膜前体FNDC5裂解而分泌的。循环鸢尾素控制着与褐变,血管生成,伤口愈合,骨量和新陈代谢有关的多种细胞过程。