academy biomed/[A08] Goat Anti-Human Apolipoprotein CI Polyclonal Antibody/1.0 mg/31A-G1b

价格
¥3660.00
货号:31A-G1b
浏览量:127
品牌:academy biomed
服务
全国联保
正品保证
正规发票
签订合同
商品描述
Host Species:Goat
Concentration:1 mg/ml (OD 1.35 / 280 nm)
Antigen:Human Apolipoprotein CI
Purification:Affinity purified
Buffer:75 mM Sodium Phosphate, 75 mM NaCl, 0.5 mM EDTA, 0.02% NaN3, pH 7.2
SpecificitySpecifically binds to human apo CI. Dilution for immunoblot and ELISA range: 1,000 to 20,000.
Use:The antibody can be used for detection of apo CI in plasma and lipoproteins, immunoassays, immunoblots, enzyme conjugation, or biotinylation.
Storage:-20°C for long-term storage, 4°C for short- term storage. Aliquot to avoid repeated freezing and thawing.

 

*These products are for research or manufacturing use only, not for use in human therapeutic or diagnostic applications.

 

Importance

ApoCI contains 57 amino acid residues and the m.w. is 6.6 kDa (Jackson et al., 1974).

ApoCI has been found to activate LCAT (Liu and Subbaiah 1993). Apo CI is an inhibitor of lipoprotein binding to the LDL receptor, LDL receptor-related protein, and VLDL receptor. Apo CI is also an inhibitor of the plasma cholesteryl ester transfer protein and of fatty acid uptake into tissues (Shachter, 2001). This inhibition role can potentially regulate several lipase enzymes (Poensgen, 1990, Conde-Knape et al., 2002; Berbee et al., 2005.)

Berbee J.F., C.C. van der Hoogt, D. Sundararaman, L.M. Havekes, and P.C. Rensen. “Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL.” J. Lipid. Res. 46 (2005) 297-306.

Conde-Knape K., A. Bensadoun, J.H. Sobel. J.S. Cohn, and N.S. Shachter. “Overexpression of apoC-I in apoE-null mice: severe hypertriglyceridemia due to inhibition of hepatic lipase” J. Lipid Res. 43 (2002): 2136-2145.

Jackson R.L.,  J. T.  Sparrow, H. N. Baker, J.D. Morrisett, O. D. Taunton, and A. M. Jr. Gotto. “The primary structure of apolipoprotein-serine.” J. Biol. Chem. 249.16 (1974): 5308-13.

Liu, M. and P.V. Subbaiah. “Activation of plasma lysolecithin acyltransferase reaction by apolipoproteins A-I, C-I and E.” Biochim. Biophys. Acta. 1168 (1993):  144-152.

Poensgen, J., “Apolipoprotein C-1 inhibits the hydrolysis by phospholipase A2 of phospholipids in liposomes and cell membranes” Biochim. Biophys. Acta. 1042 (1990): 188-192.

Shachter, Neil S., “Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism” Current Opinion in Lipidology 12(3): 297-304.

 

Citations

 

[A08][A09]2017Bus, Pascal; Pierneef, Louise; Bor, Rosalie; Wolterbeek, Ron; van Es, Leendert A.; Rensen, Patrick Cn et al. (2017): Apolipoprotein C-I plays a role in the pathogenesis of glomerulosclerosis. In J. Pathol 241 (5), pp. 589–599. DOI: 10.1002/path.4859.
[A08][A09]2017Wassef, Hanny; Bissonnette, Simon; Dufour, Robert; Davignon, Jean; Faraj, May (2017): Enrichment of Triglyceride-Rich Lipoproteins with Apolipoprotein C-I Is Positively Associated with Their Delayed Plasma Clearance Independently of Other Transferable Apolipoproteins in Postmenopausal Overweight and Obese Women. In J. Nutr. 147 (5), pp. 754–762. DOI: 10.3945/jn.116.242750.
[A08][A09]2015Trenchevska, Olgica; Schaab, Matthew R.; Nelson, Randall W.; Nedelkov, Dobrin (2015): Development of multiplex mass spectrometric immunoassay for detection and quantification of apolipoproteins C-I, C-II, C-III and their proteoforms. In Methods (San Diego, Calif.) 81, pp. 86–92. DOI: 10.1016/j.ymeth.2015.02.020.
[A08][A09]2015Yassine, Hussein N.; Trenchevska, Olgica; Ramrakhiani, Ambika; Parekh, Aarushi; Koska, Juraj; Walker, Ryan W. et al. (2015): The Association of Human Apolipoprotein C-III Sialylation Proteoforms with Plasma Triglycerides. In PLoS ONE 10 (12), e0144138. DOI: 10.1371/journal.pone.0144138.
[A08][A09]2014Zvintzou, Evangelia; Skroubis, George; Chroni, Angelika; Petropoulou, Peristera-Ioanna; Gkolfinopoulou, Christina; Sakellaropoulos, George et al. (2014): Effects of bariatric surgery on HDL structure and functionality: results from a prospective trial. In Journal of Clinical Lipidology 8 (4), pp. 408–417. DOI: 10.1016/j.jacl.2014.05.001.
[A08][A09]2013Takinami, Yoshihiko; Yoshimatsu, Shinya; Uchiumi, Takaoki; Toyosaki-Maeda, Tomoko; Morita, Atsushi; Ishihara, Takeshi et al. (2013): Identification of Potential Prognostic Markers for Knee Osteoarthritis by Serum Proteomic Analysis. In BiomarkInsights 8, BMI.S11966. DOI: 10.4137/BMI.S11966.
[A08][A09]2012Cudaback, Eiron; Li, Xianwu; Yang, Yue; Yoo, Thomas; Montine, Kathleen S.; Craft, Suzanne et al. (2012): Apolipoprotein C-I is an APOE genotype-dependent suppressor of glial activation. In Journal of Neuroinflammation 9, p. 192. DOI: 10.1186/1742-2094-9-192.
[A08][A09]2012Wassef, Hanny; Salem, Huda; Bissonnette, Simon; Baass, Alexis; Dufour, Robert; Davignon, Jean; Faraj, May (2012): White Adipose Tissue Apolipoprotein C-I Secretion in Relation to Delayed Plasma Clearance of Dietary Fat in Humans. In Arterioscler Thromb Vasc Biol. 32 (11), pp. 2785–2793. DOI: 10.1161/ATVBAHA.112.300306.
[A08][A09]2010Lahiry, Piya; Cao, Henian; Ban, Matthew R.; Pollex, Rebecca L.; Mamakeesick, Mary; Zinman, Bernard et al. (2010): APOC1 T45S polymorphism is associated with reduced obesity indices and lower plasma concentrations of leptin and apolipoprotein C-I in aboriginal Canadians. In J. Lipid Res. 51 (4), pp. 843–848. DOI: 10.1194/jlr.P002014.
[A08][A09]2009Barlage, Stefan; Gnewuch, Carsten; Liebisch, Gerhard; Wolf, Zsuzsanna; Audebert, Franz-Xaver; Glück, Thomas et al. (2009): Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. In Intensive Care Medicine 35 (11), pp. 1877–1885. DOI: 10.1007/s00134-009-1609-y.
[A08][A09]2008Abildayeva, Karlygash; Berbée, Jimmy F. P.; Blokland, Arjan; Jansen, Paula J.; Hoek, Frans J.; Meijer, Onno et al. (2008): Human apolipoprotein C-I expression in mice impairs learning and memory functions. In J. Lipid Res. 49 (4), pp. 856–869. DOI: 10.1194/jlr.M700518-JLR200.
[A08][A09]2008Berbée, Jimmy F. P.; Mooijaart, Simon P.; Craen, Anton J. M. de; Havekes, Louis M.; van Heemst, Diana; Rensen, Patrick C. N.; Westendorp, Rudi G. J. (2008): Plasma apolipoprotein CI protects against mortality from infection in old age. In The Journals of Gerontology. Series A, Biological sciences and medical sciences 63 (2), pp. 122–126. DOI: 10.1093/gerona/63.2.122.
[A08][A09]2008Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus; Porse, Bo; Ehnholm, Christian; Boesl, Michael et al. (2008): Effect of Apolipoprotein M on High Density Lipoprotein Metabolism and Atherosclerosis in Low Density Lipoprotein Receptor Knock-out Mice. In J. Biol. Chem. 283 (4), pp. 1839–1847. DOI: 10.1074/jbc.M704576200.
[A08][A09]2008He, Yubin; Greene, Diane J.; Kinter, Michael; Morton, Richard E. (2008): Control of cholesteryl ester transfer protein activity by sequestration of lipid transfer inhibitor protein in an inactive complex. In J. Lipid Res. 49 (7), pp. 1529–1537. DOI: 10.1194/jlr.M800087-JLR200.
[A08][A09]2008Li, Li; Thompson, Patricia A.; Kitchens, Richard L. (2008): Infection induces a positive acute phase apolipoprotein E response from a negative acute phase gene: role of hepatic LDL receptors. In J. Lipid Res. 49 (8), pp. 1782–1793. DOI: 10.1194/jlr.M800172-JLR200.
[A08][A09]2007Steen, Henning; Kolmakova, Antonina; Stuber, Matthias; Rodriguez, E. Rene; Gao, Fabao; Chatterjee, Subroto; Lima, Joao A. (2007): MRI visualized neo-intimal dissection and co-localization of novel apoptotic markers apolipoprotein C-1, ceramide and caspase-3 in a Watanabe hyperlipidemic rabbit model. In Atherosclerosis 191 (1), pp. 82–89. DOI: 10.1016/j.atherosclerosis.2006.05.022.
[A08][A09]2007Westerterp, Marit; Berbée, Jimmy F. P.; Delsing, Dianne J. M.; Jong, Miek C.; Gijbels, Marion J. J.; Dahlmans, Vivian E. H. et al. (2007): Apolipoprotein C-I binds free fatty acids and reduces their intracellular esterification. In J. Lipid Res. 48 (6), pp. 1353–1361. DOI: 10.1194/jlr.M700024-JLR200.
[A08][A09]2006Göbel, Thomas; Vorderwülbecke, Sonja; Hauck, Katarzyna; Fey, Holger; Häussinger, Dieter; Erhardt, Andreas (2006): New multi protein patterns differentiate liver fibrosis stages and hepatocellular carcinoma in chronic hepatitis C serum samples. In World Journal of Gastroenterology 12 (47), pp. 7604–7612. DOI: 10.3748/wjg.v12.i47.7604.
[A08][A09]2006Gonçalves, A.; Esterni, B.; Bertucci, F.; Sauvan, R.; Chabannon, C.; Cubizolles, M. et al. (2006): Postoperative serum proteomic profiles may predict metastatic relapse in high-risk primary breast cancer patients receiving adjuvant chemotherapy. In Oncogene 25 (7), pp. 981–989. DOI: 10.1038/sj.onc.1209131;
[A08][A09]2006Kawakami, Akio; Aikawa, Masanori; Libby, Peter; Alcaide, Pilar; Luscinskas, Francis W.; Sacks, Frank M. (2006): Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. In Circulation 113 (5), pp. 691–700. DOI: 10.1161/CIRCULATIONAHA.105.591743.
[A08][A09]2006Thompson, Patricia A.; Kitchens, Richard L. (2006): Native high-density lipoprotein augments monocyte responses to lipopolysaccharide (LPS) by suppressing the inhibitory activity of LPS-binding protein. In J.I. 177 (7), pp. 4880–4887. DOI: 10.4049/jimmunol.177.7.4880.
[A08][A09]2006Westerterp, Marit; Haan, Willeke de; Berbée, Jimmy F. P.; Havekes, Louis M.; Rensen, Patrick C. N. (2006): Endogenous apoC-I increases hyperlipidemia in apoE-knockout mice by stimulating VLDL production and inhibiting LPL. In J. Lipid Res. 47 (6), pp. 1203–1211. DOI: 10.1194/jlr.M500434-JLR200.
[A08][A09]2005Berbée, Jimmy F. P.; van der Hoogt, Caroline C.; Sundararaman, Deepa; Havekes, Louis M.; Rensen, Patrick C. N. (2005): Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. In J. Lipid Res. 46 (2), pp. 297–306. DOI: 10.1194/jlr.M400301-JLR200.
[A08][A09]2005Nedelkov, Dobrin; Kiernan, Urban A.; Niederkofler, Eric E.; Tubbs, Kemmons A.; Nelson, Randall W. (2005): Investigating diversity in human plasma proteins. In Proc Natl Acad Sci USA 102 (31), pp. 10852–10857. DOI: 10.1073/pnas.0500426102.
[A08][A09]2004Binkley, Charles E.; Zhang, Lizhi; Greenson, Joel K.; Giordano, Thomas J.; Kuick, Rork; Misek, Dave et al. (2004): The molecular basis of pancreatic fibrosis: common stromal gene expression in chronic pancreatitis and pancreatic adenocarcinoma. In Pancreas 29 (4), pp. 254–263.
academy biomed产品信息-载脂蛋白脂蛋白和载脂蛋白的一般信息血浆脂蛋白类别可以根据其分离的密度来定义,包括高(HDL),低(LDL),中间(IDL),极低密度脂蛋白(VLDL)和乳糜微粒。通常,脂蛋白颗粒的大小范围为10至1000 nm。它们由含有胆固醇酯,甘油三酸酯,脂肪酸和脂溶性维生素的疏水核组成。周围的亲水层由各种载脂蛋白,磷脂和胆固醇组成。载脂蛋白可以通过从脂蛋白脱脂而分离,并且已经建立了许多制备方法,例如凝胶过滤或DEAE色谱法。 脂蛋白 载脂蛋白高密度脂蛋白apoAI,AII,AIV,apoCI,CII,CIII,apoD和apoE低密度脂蛋白载脂蛋白B-100极低密度脂蛋白apoB-100,apoCI,CII,CIII和apoE乳糜微粒apoAI,AII,AIV,apoB-48,apoCI,CII,CIII,apoE和apoH 1.载脂蛋白AI(ApoAI)ApoAI约占HDL中蛋白质部分的70%。它是一条单链多肽,由243个氨基酸组成,没有二硫键结合,谷氨酸为C末端残基,天冬氨酸为N末端残基。据报道分子量为28kDa(Brewer等,1978)。ApoAI激活卵磷脂-胆固醇(LCAT)酰基转移酶,该酶负责血浆中的胆固醇酯化。ApoAI水平可能与冠状动脉疾病的风险成反比。 2.载脂蛋白AII(ApoAII)ApoAII在HDL中占ApoAI的25%。它在人血浆中以77条氨基酸残基的2条相同链的二聚体形式存在,并通过二硫键连接。据报道,单链的分子量为8.7kDa(Brewer等,1972)。对小鼠的研究报道,apoAII可能具有促动脉粥样硬化作用(Warden等,1993)。然而,大型欧洲前瞻性研究中的病例对照研究表明,血浆apoAII浓度与冠心病事件密切相关(Birjmohun等,2007)。 3.载脂蛋白B(ApoB)ApoB在人血浆中以两种亚型存在,即ApoB-48(Chen等,1987)和ApoB-100(Wei等,1985,Yang等,1986a; 1989a,b; 1990; Chen等,1990)。 1986; Yang等,1990; Yang和Pownall,1992)。ApoB-100是LDL受体的主要生理配体。ApoB100是一种大型单体蛋白,包含4536个氨基酸(分子量515 kDa,Yang等,1986b)。ApoB-100在肝脏中合成,是VLDL组装所必需的。在去除apoA,E和C后,在LDL和VLDL中发现了它。乳糜微粒及其残留物中存在ApoB-48。它对于膳食脂质的肠道吸收至关重要。ApoB水平与冠心病的风险相关。ApoB-48在小肠中合成。 4.载脂蛋白CI(ApoCI)ApoCI包含57个氨基酸残基,mw为6.6 kDa(Jackson等,1974)。已经发现ApoCI可以激活LCAT(Liu和Subbaiah 1993)并抑制胆固醇酯转移酶,该酶可能调节几种脂肪酶(Poensgen,1990; Conde-Knape等,2002; Berbee等,2005)。 5.载脂蛋白CII(ApoCII)ApoCII包含78个氨基酸残基。mw为8.5 kDa(Jackson等,1977)。ApoCII激活脂蛋白脂肪酶,该酶水解乳糜微粒中三酰基甘油中的脂肪酸。 6.载脂蛋白CIII(ApoCIII)ApoCIII包含79个氨基酸残基。mw为8.7 kDa(Brewer等,1974)。它可能会抑制apoCIII激活脂蛋白脂肪酶。ApoCIII是循环中含apoB和含apoAI的脂蛋白的组成部分。ApoCIII在调节VLDL,IDL和LDL的血浆代谢中起着关键作用,主要是通过抑制受体介导的肝脏对这些脂蛋白的摄取(Sehayek和Eisenberg 1991,Aalto-Setala等人,1992,Zheng等人。 ,2007) 7.载脂蛋白E(ApoE)ApoE包含299个氨基酸残基。它是一种34-37 kDa的糖基化蛋白(Rall等,1983)。ApoE与甘油三酸酯,磷脂,胆固醇酯和胆固醇在细胞内外的转运有关,并且是LDL受体的配体。ApoE也与免疫和神经变性有关。已经发现抑制淋巴细胞增殖。已发现晚期家族性和偶发性阿尔茨海默病患者的三种常见ApoE亚型之一ApoE4发生率更高。已在阿尔茨海默氏病患者的老年斑和神经原纤维缠结中检测到ApoE4亚型。ApoE4与乳糜微粒残留的快速清除和总胆固醇水平升高有关。 8.载脂蛋白(a)[载脂蛋白(a)]人脂蛋白[a],Lp [a]的血浆浓度与冠状动脉疾病高度相关。Lp [a]的蛋白质部分apoLp [a]由两个载脂蛋白apo [a]和apoB-100组成,它们通过一个或多个二硫键连接。Apo [a]是Lp [a]特有的蛋白质,以多态性形式存在,其表观分子量从419 kDa到838 kDa不等(Gaubatz等,1983; 1990,1993)。 9.纤溶酶原纤溶酶原包含810个氨基酸残基。它是分子量为90 kDa的单链糖蛋白(Robbins等,1967),可溶于水。由经认证测试显示对HBsAg以及HIV和HCV抗体呈阴性的血浆制备。纤溶酶原是蛋白酶纤溶酶的无活性前体。纤溶酶原通过组织纤溶酶原激活物(tPA)的作用被激活,后者主要激活纤溶酶的纤溶活性(血栓溶解),而尿激酶纤溶酶原激活物(uPA)与细胞外基质重塑和细胞迁移有关。 10. C反应蛋白(CRP)人C反应蛋白(CRP)是预测未来心血管事件(如心脏病和中风)的重要生物标志物(Koenig等,1999; Jenny等,2007; Kabagambe等。2011)。CRP是肝脏产生的急性期蛋白。它是五味素蛋白家族的成员,具有五个相同的非糖基化亚基,每个亚基具有206个氨基酸(mw 23 kDa)(Agrawal等,2009)。在炎症的其他标志物中,CRP与心血管事件之间的关联最强(Marsik等,2008; Kones等,2010)。临床研究表明,不稳定型心绞痛和CRP升高的患者的冠心病死亡率明显高于CRP升高的患者。它是检测处于斑块性高风险的个体的重要生物标志物。 11.伊里辛运动诱导型肌动蛋白鸢尾素(Boström等人,2012)是通过从跨膜前体FNDC5裂解而分泌的。循环鸢尾素控制着与褐变,血管生成,伤口愈合,骨量和新陈代谢有关的多种细胞过程。