Ossila/Reduced Graphene Oxide Powders/Chemically Reduced \/ 0.1-10 μm \/ 500mg/0.1-10 μm \/ 1g

价格
面议
货号:0.1-10μm\/1g
浏览量:61
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

Reduced graphene oxide is a form of graphene oxide that has had oxygen-containing groups removed in order to make the flakes more similar (in terms of properties) to pure graphene. The properties of the flakes vary with the degree of oxygen reduction -- the more a flake is reduced, the more similar it is to graphene than graphene oxide. Reduced graphene oxide can be made by taking graphene oxide, and either chemically reducing or thermally reducing it.

Chemically-reduced graphene oxide retains more oxygen-containing functional groups compared to thermally-reduced graphene oxide. It also has the advantage of retaining the flake size and layer ratios of the initial graphene oxide, while having lower defect density than thermally-reduced graphene oxide.

At Ossila, we sell chemically-reduced graphene oxide in two different flake sizes (0.1-1 μm and 1-100 μm), and thermally-reduced graphene oxide in one flake size (0.1-1 μm). 

Reduced Graphene Oxide Powder Structure

Reduced Graphene Oxide Powder (Chemical)Reduced Graphene Oxide Powder (Thermal)

  • List of products
  • What is reduced graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
  • Related Products

 

Product List 

 

Chemically Reduced Graphene Oxide Powders

Product codeM921M922
Flake Size0.1-10 μm1-100 μm
Flake Thickness<1nm<1nm
Purity>99%>99%
Packaging InformationLight resistant bottleLight resistant bottle
MSDSChemically Reduced Graphene Oxide MSDSChemically Reduced Graphene Oxide MSDS

Thermally Reduced Graphene Oxide Powders

Product codeM951
Flake Size0.1-1 μm
Flake Thickness<1nm
Purity>99%
Packaging InformationLight resistant bottle
MSDSThermally Reduced Graphene Oxide MSDS

 


What is Reduced Graphene Oxide?

When produced, graphene oxide  typically has a wide array of different oxygen functional groups present: 1,2-epoxide and alcohol groups on the basal planes, and carboxyl and ketone groups at the edges. Graphene oxide can be readily dispersed in a range of solvents at high concentration, either for additive processing with other materials or for the processing of thick layers. However, graphene oxide does not have the same exceptional physical and electronic properties that make graphene unique. Regardless, graphene oxide can be reduced fully or partially to produce a graphene-like structure by removing the oxygen functional groups present.

Reduced graphene oxide can be tuned by varying the degree of reduction, either by using thermal reduction or various forms of chemical reduction. Thermal reduction typically produces a higher degree of reduction than chemical processes, giving higher electrical conductivity. However, due to the high temperatures involved, this can lead to damage of the individual flakes -- either through the breaking of flakes, or through the introduction of defects within the structure. On the other hand, chemical reduction allows for the retention of flake sizes of the graphene oxide used, as well as a lower defects density per flake.

 


Dispersion Guides

Chemically-reduced graphene oxide has significantly less oxygen-containing groups per flake, making the dispersibility of this material lower than graphene oxide, or nitrogen-doped graphene oxide. Reduced graphene oxide can be dispersed in polar solvents, such as water or DMF. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to around 0.1 mg.ml-1.
  • Add 3:2 ratio of isopropyl alcohol to ethylene glycol.
  • Shake vigorously to break up material.
  • For chemically-reduced graphene oxide, use a mechanical agitator instead (as sonication may damage the flakes).
  • For thermally-reduced graphene oxide, a prolonged treatment in an ultrasonic bath can help to break up and disperse the material.

 


Technical Data

 

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF
SynonymsrGO, reduced graphene oxide, functionalised graphene
Classification / Family2D semiconducting materials, Carbon nanomaterials, Graphene oxide, Graphene and graphene oxide, Nanomaterials, OLEDs, OPVs, OFETs, Organic electronics.

Product Images

Reduced Graphene Oxide SEMThermally Reduced Graphene Oxide SEM
SEM Images of reduced graphene oxide and thermally reduced graphene oxide on silicon.

 


Publications

  • Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, G. Eda et al., Nat. Nanotech. 3, 270 - 274 (2008); doi:10.1038/nnano.2008.83.
  • Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets, C. Gómez-Navarro et al., Nano Lett., 7 (11), 3499–3503 (2007); DOI: 10.1021/nl072090c.
  • Reduced Graphene Oxide Molecular Sensors, J. T. Robinson et al., Nano Lett., 8 (10), 3137–3140 (2008); DOI: 10.1021/nl8013007.
  • Atomic Structure of Reduced Graphene Oxide, C. Gómez-Navarro et al., Nano Lett., 10 (4), 1144–1148 (2010); DOI: 10.1021/nl9031617.
  • Determination of the Local Chemical Structure of Graphene Oxide and Reduced Graphene Oxide, K. Erickson et al., Adv. Mater., 22, 4467–4472 (2010); DOI: 10.1002/adma.201000732.
  • Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials, O. C. Compton et al., small, 6 (6), 711–723 (2010); DOI: 10.1002/smll.200901934.
  • Reduced graphene oxide/carbon nanotube hybrid film as high performance negative electrode for supercapacitor, X. Cui et al., Electrochimica Acta 169, 342–350 (2015); doi:10.1016/j.electacta.2015.04.074.
  • Few-Layered SnS2 on Few-Layered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability, Y. Zhang et al., Adv. Funct. Mater., 25, 481–489 (2015); DOI: 10.1002/adfm.201402833.
  • Reduced Graphene Oxide Micromesh Electrodes for Large Area, Flexible, Organic Photovoltaic Devices, D. Konios et al., Adv. Funct. Mater., 25, 2213–2221 (2015); DOI: 10.1002/adfm.201404046.
  • Thermally reduced graphene oxide films as flexible lateral heat spreaders, N-J. Song et al., J. Mater. Chem. A, 2, 16563 (2014); DOI: 10.1039/c4ta02693d.
  • Supercapacitor performances of thermally reduced graphene oxide, B. Zhao et al., J. Power Sources, 198, 423-427 (2012); doi:10.1016/j.jpowsour.2011.09.074.
  • Controlled ripple texturing of suspended graphene and ultrathin graphite membranes, W. Bao et al., Nanotechnol. 4, 562–566 (2009); doi:10.1038/nnano.2009.191.
  • Thermally reduced graphene oxide-coated fabrics for flexible supercapacitors and self-powered systems, A. Ramadoss et al., Nano Energy, 15, 587-597 (2015); doi:10.1016/j.nanoen.2015.05.009.
  • Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode, C-Y. Ho et al., Appl. Surf. Sci., 357, 147-154 (2015); doi:10.1016/j.apsusc.2015.09.016.

  

 


  

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介     文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码     系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物