Ossila/二硒化钼12458-18-3 | MoSe2/中等/M2108A25

价格
¥11560.00
货号:M2108A25
浏览量:127
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

Like most of the transition metal dichalcogenides and graphite, molybdenum diselenide (MoSe2) has a two-dimensional layered structure - with the individual layers stacked together by weak van der Waals interactions. Due to the larger size and better conductivity of selenium over sulphur, MoSeis one of the best TMDCs of metallic nature. This also provides a great opportunity for hosting counterions in  electrochemical energy storage systems (such as lithium-ion and sodium-ion batteries).

Like MoS2, MoSeundergoes changes from indirect to direct band-gap transitions when bulk material (such as the bulk crystal) is reduced to monolayer film. However, unlike MoS2, few-layer MoSeflakes possess a nearly degenerate indirect and direct band-gap. An increase in temperature/pressure can effectively push the system toward the quasi-2D limit by reducing the coupling between the layers. MoS2, on the other hand, has indirect and direct band-gaps that are well-separated in energy - and hence, far from degenerate.

Compared to MoS2, MoSe2 exhibits higher electrical conductivity.

General Information

CAS number12058-18-3
Chemical formulaMoSe2
Molecular weight253.86 g/mol
Bandgap1.41 - 1.58 eV [1]
SynonymsMolybdenum (IV) selenideMolybdenum selenide
Classification / FamilyTransition metal dichalcogenides (TMDCs), 2D semiconductor Materials, Nano-electronics, Nano-photonics, Electrochemical energy storage system, Materials science

Product Details

FormSingle Crystal
Acquire methodSynthetic - Chemical Vapour Transport (CVT)
Purity≥ 99.995%
StructureHexagonal
Electronic properties2D semiconductor
Melting point>1,300 °C
ColourBlack/Dark brown

Chemical Structure

MoSe2 Molybdenum diselenide crystal structure
Hexagonal structure of Molybdenum Diselenide (MoSe2)

Applications

In contrast to graphene, exfoliated monolayer or few-layer 2D MoSehas a direct band-gap. It has applications in transistors, photo-detectors, and photovoltaics. Due to its layered structure and the unique nature of selenium, MoSehas been widely used in lubricants and energy storage devices.

Synthesis

Molybdenum diselenide MoSe2 is manufactured via the process of chemical vapour transport (CVT) crystallisation, with purities of over 99.999% achieved.

Usage

Molybdenum diselenide MoSe2 single crystals are a great source for obtaining monolayer and few-layer MoSe2 via mechanical or liquid exfoliation. Single crystals can also be used directly in optical and scanning-probe microscopy (such as AFM and TEM studies).

Viscoelastic transfer using PDMS

Video by Ossila

Pricing

SizeProduct codeSize description*Quantity (EA)Price
SmallM2108A10>10 mm21£357.00
MediumM2108A25>25 mm21£578.00
Large**M2108A00>100 mm21£1350.00

*typical representative size, areas/dimensions may vary

**item with a lead time of 2-3 weeks, please contact for more information

Literature and Reviews

  1. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2, Y. Zhang et al., Nat. Nanotech., 9, 111–115 (2014); DOI: 10.1038/NNANO.2013.277.
  2. Large-Area Synthesis of Monolayer and Few-Layer MoSe2 Films on SiO2 Substrates, X. Lu et al., Nano Lett., 14 (5), 2419–2425 (2014); DOI: 10.1021/nl5000906.
  3. High-Mobility Transistors Based on Large-Area and Highly Crystalline CVD-Grown MoSe 2 Films on Insulating Substrates, J-S. Rhyee et al., Adv. Mater., 28, 2316–2321 (2016); DOI: 10.1002/adma.201504789.
  4. Large-Area Single-Layer MoSe2 and Its van der Waals Heterostructures,  G. Shim et al., CS Nano, 8 (7), 6655–6662 92014);DOI: 10.1021/nn405685j.
  5. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2, S. Tongay et al., Nano Lett., 12, 5576−5580 (2012); DOI: 10.1021/nl302584w.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介     文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码     系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物