- “超级人类”:霍金担心基因改造会让自然人类灭绝
- 3m9002假的有用吗
- 磷酸钾(Potassium phosphate)「CAS号:7778532」 – 960 ...
- Ossila__迈可诺技术有限公司
- OS匀胶旋涂仪迈可诺技术有限公司
- Ossila狭缝涂布仪_华仪行(北京)科技有限公司
- Ossila狭缝挤出式旋涂机性能参数,报价/价格,图片
- 欧西拉/Ossila非真空旋涂仪精巧型功能应用性能参数,报价/价格,图片...
- Ossila/DMACDPS | 1477512325/250 mg/M2121A1_杯_耗材_其它...
- 杰出青年科学家奖
- ossila ossila批发价格、市场报价、厂家供应
- pce11 (pffbt4t2od) from £296.00
Tris(1-phenylisoquinoline)iridium(III), Ir(piq)3 is a deep red phosphorescent dopant material.
Due to their high electron affinities, quinoline/isoquinoline-based compounds have received considerable attention in optoelectronic materials. With greater π-electronic conjugation in the isoquinoline ring, the energy of the lowest unoccupied molecular orbital (LUMO) is significantly lowered, and the energy gap is reduced.
Ir(piq)3, together with Ir(piq)2acac, are the ones that have been most studied in theisoquinoline iridium complex family. The "piq" unit of the ligand part can partially suppress the triplet-triplet annihilation and show short phosphorescent lifetimes.
General Information
| CAS number | 435293-93-9 |
| Chemical formula | C45H30IrN3 |
| Molecular weight | 804.96 g/mol |
| Absorption | λmax 324 nm in THF |
| Fluorescence | λem 615 nm in THF |
| HOMO/LUMO | HOMO 5.1 eV, LUMO 3.1 eV [1] |
| Synonyms |
|
| Classification / Family | Organometallic iridium complex, Red emitter, Phosphorescence dopant OLEDs, Sublimed materials |
Product Details
| Purity | >99.0% (sublimed) >98.0% (unsublimed) |
| Melting point | 454 °C |
| Appearance | Dark-red powder |
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure

Device Structure(s)
| Device structure | ITO/NPD* (40 nm)/9%-Ir(piq)3:CBP (20 nm)/BPhen (50 nm)/KF (1 nm)/Al [2] |
| Colour | Red |
| Max. Luminance | 11,000 cd/m2 |
| Max EQE | 10.3% |
| Max. Power Efficiency | 8.0 lm W−1 |
| Device structure | ITO/PEDOT:PSS/BlueJ*:PVK:Ir(pbpp)3*:Ir(piq)3/BCP/Li:Al [3] |
| Colour | White |
| Max. Luminance | 905 cd/m2 |
| Max EQE | 3.2% |
| Max. Current Efficiency | 12.52 cd/A |
| Device structure | ITO/NPB (40 nm)/Bebq2:1 wt% Ir(piq)3 (30 nm)/Bebq2 (20 nm)/LiF (0.5 nm)/Al (100 nm)[6] |
| Colour | Red |
| Max. Current Efficiency | 12.71 cd/A |
| Max. Power Efficiency | 16.02 lm W−1 |
| Device structure | ITO/TAPC (40 nm)/TCTA:Ir(piq)3 2 wt % (1 nm)/TCTA 46 wt %:BP4mPy 46 wt %: FIrpic 8 wt % (28 nm)/BP4mPy:Ir(piq)3 3 wt % (1 nm)/BP4mPy (40 nm)/LiF (0.8 nm)/Al (150 nm) [7] |
| Colour | White |
| Max. Luminance | 19,007 cd/m2 |
| Max EQE | 11.3% |
| Max. Current Efficiency | 15.6 cd/A |
| Max. Power Efficiency | 16.3 lm W−1 |
| Device structure | ITO/TAPC (40 nm)/ TCTA 46 wt %:BP4mPy 46 wt %:Ir(piq)3 8 wt % (30 nm)/ BP4mPy (40 nm)/LiF (0.8 nm)/Al (150 nm) [7] |
| Colour | Red |
| Max. Luminance | 14,879 cd/m2 |
| Max EQE | 8.8% |
| Max. Current Efficiency | 5.6 cd/A |
| Max. Power Efficiency | 5.4 lm W−1 |
| Device structure | ITO/MeO-TPD: F4-TCNQ (100 nm, 4 %)/NPB (15 nm)/TCTA (5 nm)/TCTA: Ir (ppy)3 : Ir(piq)3 (25 nm, 1:9:0.8 %)/MADN: DSA-ph (20 nm, 1 %)/Bepp2 (250 nm)/LiF (1 nm)/Al (200 nm) [8] |
| Colour | White |
| Max. Current Efficiency | 8.4 cd/A |
| Max. Power Efficiency | 13.1 lm W−1 |
| Max. CRI | 90 |
| Device structure | ITO(150 nm)/NPB(70 nm)/mCP:Firpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5%(30 nm)/TPBi(30 nm)/Liq(2 nm)/Al(120 nm) [9] |
| Colour | White |
| Max. Luminance | 37,810 cd/m2 |
| Current Efficiency@1000 cd/m2 | 48.10 cd/A |
| Device structure | ITO/PEDOT:PSS (40 nm)/NPB (15 nm)/ TCTA: 4 wt.% Ir(piq)3 (3.5 nm)/TCTA: 4 wt.% Ir(bt)2(acac) (4 nm)/TCTA: 25 wt.% TmPyPb*: 2 wt. % 4P-NPD* (7 nm)/TmPyPb (4 nm)/TmPyPb: 5 wt.% Ir(ppy)2(acac) (3 nm)/TmPyPb (15 nm)/TmPyPb: 4 wt.% Cs2CO3 (35 nm)/ Cs2CO3/Al [10] |
| Colour | White |
| EQE@1000 cd/m2 | 14.2% |
| Current Efficiency@1000 cd/m2 | 26 cd/A |
| Power Efficiency@1000 cd/m2 | 21.9 lm W−1 |
*For chemical structure information, please refer to the cited references.
Characterisation

Pricing
| Grade | Order Code | Quantity | Price |
| Sublimed (>99% purity) | M641 | 100 mg | £196.00 |
| Unsublimed (>98% purity) | M642 | 250 mg | £195.00 |
| Sublimed (>99% purity) | M641 | 250 mg | £359.00 |
| Unsublimed (>98% purity) | M642 | 500 mg | £333.00 |
MSDS Documentation
Ir(piq)3 MSDS sheet
Literature and Reviews
- Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host, T. J. Park et al., Appl. Phys. Lett., 92, 113308 (2008); doi: 10.1063/1.2896641.
- Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, A. Tsuboyama et al., J. Am. Chem. Soc., 125, 12971-12979 (2003). DOI: 10.1021/ja034732d.
- White-Light-Emitting Diodes Based on Iridium Complexes via Efficient Energy Transfer from a Conjugated Polymer, T-H. Kim et al., Adv. Funct. Mater., 16, 611–617 (2006). DOI: 10.1002/adfm.200500621.
- Efficient multiple triplet quantum well structures in organic light-emitting devices, T. J. Park et al., Appl. Phys. Lett., 95, 103303 (2009); doi: 10.1063/1.3224190.
- Color stable white phosphorescent organic light emitting diodes with red emissive electron transport layer, J. W. Kim et al., Appl. Phys. Lett., 117, 245503 (2015); doi: 10.1063/1.4923048.
- Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology, W. S. Jeon et al., J. Info. Display, 10 (2), 87-91, (2009).
- Efficient red, green, blue and white organic light-emitting diodes with same exciplex host, C-H. Chang et al., Jpn. J. Appl. Phys. 55, 03CD02 (2016); http://doi.org/10.7567/JJAP.55.03CD02.
- Very-High Color Rendering Index Hybrid White Organic Light-Emitting Diodes with Double Emitting Nanolayers, B. Liu et al., Nano-Micro Lett., 6(4):335–339 (2014); DOI 10.1007/s40820-014-0006-4.
- Study of Sequential Dexter Energy Transfer in High Efficient Phosphorescent White Organic Light-Emitting Diodes with Single Emissive Layer, J. Kim et al., Sci Rep., 4: 7009 (2014); doi: 10.1038/srep07009.
- A white organic light-emitting diode with ultra-high color rendering index, high efficiency, and extremely low efficiency roll-off, N. Sun et al., Appl. Phys. Lett. 105, 013303 (2014); http://dx.doi.org/10.1063/1.4890217.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介 文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码 系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物

