- “超级人类”:霍金担心基因改造会让自然人类灭绝
- 3m9002假的有用吗
- 磷酸钾(Potassium phosphate)「CAS号:7778532」 – 960 ...
- Ossila__迈可诺技术有限公司
- OS匀胶旋涂仪迈可诺技术有限公司
- Ossila狭缝涂布仪_华仪行(北京)科技有限公司
- Ossila狭缝挤出式旋涂机性能参数,报价/价格,图片
- 欧西拉/Ossila非真空旋涂仪精巧型功能应用性能参数,报价/价格,图片...
- Ossila/DMACDPS | 1477512325/250 mg/M2121A1_杯_耗材_其它...
- 杰出青年科学家奖
- ossila ossila批发价格、市场报价、厂家供应
- pce11 (pffbt4t2od) from £296.00
Copper(II) phthalocyanine, known as CuPc, has been used as an electron donor with fullerene-C60 or phenyl-C61-butyric acid methyl ester (PCBM) in vacuum-deposited organic photovoltaics (OPV)[1]. Power conversion efficiency of about 1% has been achieved [2] and improved efficiency of 4% with pentacene-doped CuPc layer [3]. CuPc has also been used as a hole-injection material for light-emitting diodes. It has been reported that a thin CuPc layer may effectively enhance the hole injection from the anode to the emissive-polymer layer, resulting in a dramatic decrease of operating voltage of the device [4]. Device stability was achieved by depositing a copper phthalocyanine CuPc hole-injection layer HIL on the ITO anode.
The improved stability of the device could be contributed to the good match of its highest-occupied molecular orbital (HOMO) level to the work function of ITO, and the improved wetting property of organic materials on ITO. Moreover, CuPc has very weak absorption of light, with wavelengths from 400 to 500 nm, making it suitable for use in blue and green OLEDs. Effective electron-blocking was also observed for inorganic–organic hybrid perovskite solar cells when CuPc-doped spiro-OMeTAD was used as the hole-transporting layer [5].
General Information
| CAS number | 147-14-8 |
| Chemical formula | C32H16CuN8 |
| Molecular weight | 576.07 g/mol |
| Absorption | λmax 678 nm (DMF) |
| Fluorescence | λem 459 nm (DMF) |
| HOMO/LUMO | HOMO ~ 5.2 eV LUMO ~ 3.5 eV |
| Synonyms |
|
| Classification / Family | Organometallic, Copper complex, Phthalocyanine, Small molecule, Light-emitting diodes, Hole injection layer (HIL) materials, Polymer solar cells, Perovskite solar cells, Sublimed materials. |
Product Details
| Purity | >99% (sublimed) |
| Melting point | 350 °C |
| Appearance | Blue-purple needles/powder |
*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.
Chemical Structure

Device Structure(s)
| Device structure | ITO/CuPc(6.0 nm)/[NPB*(3.8 nm)/CuPc (1.5 nm)]4/NPB (15.0 nm)/Alq3 (60.0 nm)/Mg:Ag/Ag [6] |
| Colour | Green |
| Max. Luminance | 15,000 cd/m2 |
| Max. Current Efficiency | 10.8 cd/A |
| Device structure | ITO/CuPc(10 nm)/NPB(50 nm)/AlMq2OH*(80 nm)/ LiF(0.7 nm)/Al(80 nm) [7] |
| Colour | Blue |
| Turn-on Voltage | 9 V |
| Max. Luminance | 14,070 cd/m2 |
| Device structure | ITO/CuPc (15 nm)/NPB (60 nm)/1% v/v C545T*:Alq3 (37.5 nm)/Alq3 (27.5 nm)/Mg:Alq3 (10 nm)/ WO3 (1 nm)/NPB (60 nm)/1% v/v C545T:Alq3 (37.5 nm)/Alq3 (37.5 nm)/LiF(1 nm)/Al (200 nm) [8] |
| Colour | Green |
| EQE@ 20 mA/cm2 | 12.6% |
| Current Efficiency@20 mA/cm2 | 49.2 cd/A |
| Power Efficiency@20 mA/cm2 | 5.5 lm W-1 |
| Device structure | ITO/CuPc (15 nm)/NPB (30 nm)/ TPBi:Btp2Ir(acac)* 8 wt% (20 nm)/TPBi (15 nm)/Alq (15 nm)/LiF (1 nm)/Al (100 nm) [9] |
| Colour | Red |
| Max. Luminance | 4,798 cd/m2 |
| EQE@4 mA/cm2 | 2.1% |
| Current Efficiency@4 mA/cm2 | 2.43 cd/A |
| Power Efficiency@4 mA/cm2 | 0.89 lm W-1 |
| Device structure | ITO/CuPc (25 nm)/NPB (25 nm)/Alq3 (20nm)/LiF (0.3 nm)/Al (0.6 nm)/C60 (30 nm)/Mg:Ag (100 nm) [10] |
| Colour | White |
| Max. Luminance | 17,170 cd/m2 |
| Max. Current Efficiency | 3.93 cd/A |
| Device structure | ITO/CuPc (25 nm)/NPB (45 nm)/Alq3 (60 nm)/LiF (1 nm)/Al (100 nm) [11] |
| Colour | Green |
| Max. Luminance | 23,510 cd/m2 |
| Max. Current Efficiency | 4.8 cd/A |
| Max. Power Efficiency | 4.2 lm W-1 |
| Device structure | ITO/CuPc (18 nm)/TPD (50 nm)/Alq3 (60 nm)/BCP (10 nm)/LiF (1 nm)/Al (100 nm) [12] |
| Colour | Green |
| Max. Luminance | 5,993 cd/m2 |
| Max. Current Efficiency | 3.82 cd/A |
| Max. Power Efficiency | 2.61 lm W-1 |
*For chemical structure information, please refer to the cited references
Characterisation

MSDS Documentation
CuPc MSDS sheet
Literature and Reviews
- Influence of codeposition on the performance of CuPc–C60 heterojunction photovoltaic devices, P. Sullivan et al., Appl. Phys. Lett., 84, 1210 (2004).
- Two‐layer organic photovoltaic cell, C.Tang et al., Appl. Phys. Lett., 48, 183 (1986), http://dx.doi.org/10.1063/1.96937.
- Improving efficiency of organic photovoltaic cells with pentacene-doped CuPc layer, W. Chen et al., Appl. Phys. Lett., 91, 191109 (2007), http://dx.doi.org/10.1063/1.2806195.
- Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes, W. Yu et al., J. Appl. Phys., 89, 2343, (2001).
- Effective Electron Blocking of CuPC-Doped Spiro-OMeTAD for Highly Efficient Inorganic–Organic Hybrid Perovskite Solar Cells, J. Seo et al., Adv. Energy Mater., 2015, 1501320, DOI: 10.1002/aenm.201501320.
- Organic light-emitting diodes with improved hole-electron balance by using copper phthalocyanine/aromatic diamine multiple quantum wells, Y. Qiu et al., Phys. Lett., 80, 2628 (2002); Appl. doi: 10.1063/1.1468894.
- A High-Efficiency Blue Emitter for Small Molecule-Based Organic Light-Emitting Diode L. M. Leung et al., J. Am. Chem. Soc., 122, 5640-5641 (2000). DOI: 10.1021/ja000927z.
- High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units,C-C. Chang et al., Jpn. J. Appl. Phys., 43, 6418–6422 (2004); [DOI: 10.1143/JJAP.43.6418.
- Obtaining high-efficiency red electrophosphorescent OLEDs by changing the thickness of light-emitting layer, X. Zhang et al., Display, 28, 150–153 (2007); doi:10.1016/j.displa.2007.06.001.
- Contrast and efficiency enhancement in organic light-emitting devices utilizing high absorption and high charge mobility organic layers, W. Xie et al.,opt. Express, 14, 7954-7959 (2006).
- Green Fluorescent Organic Light Emitting Device with High Luminance, N. Yang et al., Sensors & Transducers, 172 (6), 202-205 (2014).
- Effect of thickness variation of hole injection and hole blocking layers on the performance of fluorescent green organic light emitting diodes, K. Narayan et al., Curr. Appl. Phys., 13, 18-25 (2013); dio: 10.1016/j.cap.2012.06.004.
To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.
专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介 文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码 系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物

