Ossila/Graphene Oxide Powders and Solutions/100-200nm Flake Size / Powder / 100 mg/Powder / 500 mg

价格
面议
货号:Powder/500mg
浏览量:99
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

Graphene oxide is one of the most popular 2D materials available. This is due to the wide range of fields that it can be applied to. It has a distinct advantage over other 2d materials (such as graphene), as it is easily dispersed within solution; allowing for processing at high concentrations. This has opened it up for use in applications such as optical coatings, transparent conductors, thin-film batteries, chemical resistant coatings, water purification, and many more.

Ossila have two types of graphene oxide powders available, with flake sizes between 1-5um and 1-50um. In addition, we also offer pre-dispersed graphene oxide solutions for simple instant use.

Graphene Oxide Powder

Graphene Oxide Powder StructureGraphene Oxide Powder XRD

  • List of products
  • What is graphene oxide?
  • Dispersion guides
  • Technical data and images
  • Publications
  • Related Products

Product List

MSDS Graphene Oxide Powder MSDS

Graphene Oxide Powders

Product codeM880M881M882
Flake Size100 - 200nm1-5 μm1-50 μm
Flake Thickness0.8 - 1.2 nm0.8-1.2 nm0.8-1.2 nm
Single layer ratio>99%>99%>99%
Purity>99%>99%>99%
Amount100mg, 500mg500mg, 1g500mg, 1g
Packaging InformationLight resistant bottleLight resistant bottleLight resistant bottle

MSDS Graphene Oxide Solutions MSDS

Graphene Oxide Solutions

Product codeM883M884M885M886
Flake Sizes1-5 μm1-5 μm1-50 μm1-50 μm
Concentration5 mg.ml-10.5 mg.ml-15 mg.ml-10.5 mg.ml-1
SolventsWater:IPAWater:IPAWater:IPAWater:IPA
Solution Volume100 ml100 ml100 ml100 ml
Packaging Information4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles4 x 25 ml bottles


What Graphene Oxide is

Graphene oxide (GO), also referred to as graphite/graphitic oxide, is obtained by treating graphite with oxidisers, and results in a compound of carbon, oxygen, and hydrogen in variable ratios.

The structure and properties of GO are much dependent on the particular synthesis method and degree of oxidation. With buckled layers and an interlayer spacing almost two times larger (~0.7 nm) than that of graphite,it typically still preserves the layer structure of the parent graphite.

GO absorbs moisture proportionally to humidity and swells in liquid water. GO membranes are vacuum-tight and impermeable to nitrogen and oxygen, but permeable to water vapours. The ability to absorb water by GO depends on the particular synthesis method and also shows a strong temperature dependence.

GO is considered as an electrical insulator for the disruption of its sp2 bonding networks. However, by manipulating the content of oxygen-containing groups through either chemical or physical reduction methods, the electrical and optical properties of GO can be dynamically tuned. To increase the conductivity, oxygen groups are removed by reduction reactions to reinstall the delocalised hexagonal lattice structure. One of the advantages GO has over graphene is that it can be easily dispersed in water and other polar organic solvents. In this way, GO can be dispersed in a solvent and reduced in situ, resulting in potentially monodispersed graphene particles.

Due to its unique structure, GO can be functionalised in many ways for desired applications, such as optoelectronics, drug delivery, chemical sensors, membrane filtration, flexible electronics, solar cells and more.

GO was first synthesised by Brodie (1859), followed by Hummers" Method (1957), and later on by Staudenmaier and Hofmann methods. Graphite (graphene) oxide has also been prepared by using a "bottom-up" synthesis method (Tang-Lau method) where glucose is the sole starting material. The Tang-Lau method is considered to be easier, cheaper, safer and more environmentally-friendly. The thickness, ranging from monolayer to multilayers, can by adjusted using the Tang-Lau process. The effectiveness of an oxidation process is often evaluated by the carbon/oxygen ratios of the GO.


Dispersion Guides

Due to the presence of oxygen and hydroxide groups, the dispersibility of this material is significantly better than other 2d materials (such as graphene). High concentrations of GO can be dispersed in polar solvents, such as water. At Ossila, we have found that the most stable solutions can be produced using the following recipe:

  • Weigh out desired amount of material, this can go up to at least 5 mg.ml-1.
  • Add 1:1 ratio of deionized water to isopropyl alcohol.
  • Shake vigorously to break up material.
  • A short treatment in an ultrasonic bath will rapidly disperse the material.
  • For larger flakes, use a mechanical agitator instead (as sonication may damage the flakes).


Technical Data

General Information

CAS number7782-42-5 (graphite)
Chemical formulaCxHyOz
Recommended SolventsH2O, DMF, IPA
Synonyms
  • Single layer GO
  • GO
Classification / Family2D semiconducting materials, Carbon nanomaterials, Graphene, Organic electronics
ColourBlack/Brown Sheets/Powder

Product Images

Monolayer Graphene OxideGraphene Oxide SEM
SEM Images of flakes on silicon.


Publications

  • An improved Hummers method for eco-friendly synthesis of graphene oxide, J. Chen et al., Carbon 64, 225-229 (2013); http://dx.doi.org/10.1016/j.carbon.2013.07.055.
  • Synthesis of few-layered, high-purity graphene oxide sheets from different graphite sources for biology, D. A. Jasim et al., 2D Mater. 3, 014006 (2016); doi:10.1088/2053-1583/3/1/014006.
  • Preparation and Characterization of Graphene Oxide, J. Song et al., J. Nanomater., 276143 (2014); http://dx.doi.org/10.1155/2014/276143.
  • The chemistry of graphene oxide, D. R. Dreyer et al., Chem. Soc. Rev., 39, 228–240 (2010); DOI: 10.1039/b917103g.
  • Preparation of small-sized graphene oxide sheets and their biological applications, M. Zhang et al., J. Mater. Chem. B, 4, 121 (2016); DOI: 10.1039/c5tb01800e.
  • Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, D. Chen et al., Chem. Rev., 112, 6027−6053 (2012); dx.doi.org/10.1021/cr300115g.
  • Preparation of Graphitic Oxide, W. Hummer et al., J. Am. Chem. Soc., 80 (6), 1339–1339 (1958); DOI: 10.1021/ja01539a017.
  • Improved Synthesis of Graphene Oxide, D. C. Marcano et al., ACS Nano, 4 (8), 4806–4814 (2010); DOI: 10.1021/nn1006368.
  • Fast and fully-scalable synthesis of reduced graphene oxide, S. Abdolhosseinzadeh et al., Sci. Rep., 5:10160 (2015); DOI: 10.1038/srep10160.


To the best of our knowledge, the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介     文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码     系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物