Ossila/TCTA for OLEDs & Perovskites | CAS 139092-78-7/1 g Unsublimed Grade (u003e98.0% purity)/M472

价格
¥1760.00
货号:M472
浏览量:127
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

Having three carbazole units as the pendants and triarylamine at the core, tris(4-carbazoyl-9-ylphenyl)amine (TCTA) is electron-rich. As a result, it is widely used as a hole-transport and hole-injection material in light-emitting diodes and perovskite solar cells. With low electron mobility, TCTA has also been used as exciton/electron blocking layer materials because of its high lying LUMO energy level (LUMO = 2.4 eV).

TCTA is also a very popular phosphorescent host material due to its large band gap (Eg = 3.4 eV) for green, red and white phosphorescent organic light-emitting diodes (PhOLEDs).

General Information

CAS number139092-78-7
Chemical formulaC54H36N4
Molecular weight740.89 g/mol
Absorptionλmax 293 and 326 nm (THF)
Fluorescenceλem 385 nm (THF)
HOMO/LUMOHOMO = 5.83 eV, LUMO = 2.43 eV [1]
Synonyms
  • TCTA, 4,4",4"-Tris(carbazol-9-yl)triphenylamine
  • Tris(4-carbazoyl-9-ylphenyl)amine
Classification / Family

Carbazole derivatives, Hole-injection layer materials, Hole-transporting layer materials, Phosphorescent host materials, Electron-blocking layer materials, Light-emitting diodes

Product Details

Purity

 >99.5% (sublimed)

 >98.0% (unsublimed)

Melting point298~300 °C
AppearanceWhite powder/crystals

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

tcta chemical stucture
Chemical Structure of Tris(4-carbazoyl-9-ylphenyl)amine (TCTA)

Device Structure(s)

Device structureITO/MoO3 (8 nm)/(NPB)(80 nm)/TAPC(5 nm)/TCTA:4 wt% Ir(MDQ)2(acac) (4 nm)/TCTA:2 wt% Ir(ppy)3 (4 nm)/43 wt% TCTA: 43 wt% 26DCzPPy: 14 wt% FIrpic (5 nm)/TmPyPb (40 nm)/LiF/Al [1]
ColourWhite   white
Max. EQE19.4%
Max. Current Efficiency43.6 cd/A
Max. Power Efficiency45.8 lm W1
Device structure            ITO/PEDOT:PSS/TCTA:TPOB:10 wt % FIrpic/TmPyPB/Cs2CO3/Al [2]
ColourBlue   blue
Max. EQE                      13.8%
Max. Current Efficiency28.2 cd/A
Max. Power Efficiency22 lm W1
Device structure   ITO/NPB (40 nm)/TCTA (20 nm)/TPA-C-TPA (30 nm)/TPBi (20 nm)/LiF (1 nm)/Al (200 nm) [3]
ColourDeep Blue   deep blue
EQE@10 mA/ cm24.83%
Current Efficiency@10 mA/ cm23.18 cd/A
Power Efficiency@10 mA/ cm22.03 lm W1
Device structure            ITO/PEDOT:PSS (25 nm)/TCTA:POPH:10 wt% FIrpic (35 nm)/TPBI (35 nm)/Ca (10 nm)/Ag [4]
ColourBlue   blue
Max. Luminance40,000 cd/m2
Max. Current Efficiency25.8 cd/A
Max. Power Efficiency22.5 lm W1
Device structureITO/PEDOT:PSS(40 nm)/TCTA:TAPC:FIrpic:Ir(ppy)3:Ir(MDQ)2(acac) (40nm)/TmPyPB (50 nm)/LiF (1 nm)/Al [5]
ColourWhite   white
Max. Current Efficiency37.1 cd/A
Max. Power Efficiency32.1 lm W1
Device structure ITO/MoO3 (3nm)/NPB (20nm)/TCTA (8nm)/TCTA:3P-T2T (1:1): 1.0 wt% DCJTB (15nm)/3P-T2T (45nm)/LiF (1nm)/Al [6]
ColourRed   red
MAX. EQE10.15%
Max. Luminance22, 767 cd/m2  
Max. Current Efficiency22.7 cd/A                  
Max. Current Efficiency21.5 lm W1
Device structureITO/PEDOT:PSS/α-NPD (20 nm)/TCTA (5 nm)/T2T*:(PPy)2Ir(acac)(9:1 wt%) (25 nm)/TAZ (50 nm)/LiF (0.5 nm)/Al (100 nm) [7]
ColourGreen    green
Max. Luminance85,000 cd/m2
Max. Current Efficiency54 cd/A
Max. EQE    17.4%
Max. Power Efficiency48 lm W−1 

Device structure

ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP:6 wt%2CzPN (11 nm)/TAZ:4 wt% PO-01 (4 nm)/TAZ (40 nm)/LiF (0.5 nm)/Al (150 nm) [8]

ColourWhite   white
Max. EQE38.4%
Max. Power Efficiency80.1 lm W1
Device structureITO/EHI608/TCTA/TCTA:3TP:Firpic (1:1:0.17)/3TPYMB/Al [9]        
ColourBlue   blue
Max Power Efficiency27.5 lm W-1
Max. Current Efficiency36.0 cd/A
Device structure

ITO/MoOx (5 nm)/NPB (40 nm)/4% Y-Pt*:TCTA (20 nm)/8% FIrpic:mCP(10 nm)/8% FIrpic:UGH2 (10 nm)/BAlq (40 nm)/LiF (0.5 nm)/Al (100 nm) [10]

ColourWhite   white
Max. EQE 16.0%
Max. Current Efficiency45.6 cd/A
Max. Power Efficiency35.8 lm W1

*For chemical structure informations please refer to the cited references.

Pricing

GradeOrder CodeQuantityPrice
Sublimed (>99.5% purity)M471500 mg£123.00
Unsublimed (>98.0% purity)M4721 g£88.00
Sublimed (>99.5% purity)M4711 g£183.00

MSDS Documentation

TCTA MSDSTCTA MSDS sheet

Literature and Reviews

  1. High-Efficiency Phosphorescent White Organic Light-Emitting Diodes with Stable Emission Spectrum Based on RGB Separately Monochromatic Emission Layers, Q. Zhang et al., Chin. Phys. Lett., 31 (4) 046801 (2014).
  2. Enhanced Electron Affinity and Exciton Confinement in ExciplexType Host: Power Efficient Solution-Processed Blue Phosphorescent OLEDs with Low Turn-on Voltage, X. Ban et al., ACS Appl. Mater. Interfaces, 8, 2010-2016 (2016); DOI: 10.1021/acsami.5b10335.
  3. Highly efficient emitters of ultra-deep-blue light made from chrysene chromophores, H. Shin et al., J. Mater. Chem. C, 2016, Advance Article; DOI: 10.1039/C5TC03749B.
  4. High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn-on Voltage Approaching the Theoretical Limit, X. Ban et al., ACS Appl. Mater. Interfaces, 7 (45), 25129–25138 (2015); DOI: 10.1021/acsami.5b06424.
  5. Solution-Processed Small Molecules As Mixed Host for Highly Efficient Blue and White Phosphorescent Organic Light-Emitting Diodes, Q Fu. et al., ACS Appl. Mater. Interfaces, 4, 6579−6586 (2012); dx.doi.org/10.1021/am301703a.
  6. Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host, B. Zhao et al., Scientific Reports | 5:10697 | DOI: 10.1038/srep10697.
  7. 1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs,H-Fan Chen et al., J. Mater. Chem., 19, 8112–8118 (2009). 
  8. Highly efficient and color-stable hybrid warm white organic light-emitting diodes using a blue material with thermally activated delayed fluorescence, D. Zhang et al., J. Mater. Chem. C, 2, 8191-8197 (2014); DOI: 10.1039/c4tc01289e.
  9. Enhance efficiency of blue and white organic light emitting diodes with mixed host emitting layer using TCTA and 3TPYMB, T-C. Liao et al., Curr. Appl. Phys., 13, S152-S155, (2013).
  10. High Efficiency White Organic Light-Emitting Devices Incorporating Yellow Phosphorescent Platinum(II) Complex and Composite Blue Host, S-L. Lai et al., Adv. Funct. Mater., 23, 5168–5176 (2013); DOI: 10.1002/adfm.201300281.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介     文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码     系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物