Ossila/m-MTDATA |低价,在线购买| CAS 124729-98-2/1 g/M621

价格
¥6580.00
货号:M621
浏览量:107
品牌:Ossila
服务
全国联保
正品保证
正规发票
签订合同
商品描述

With its very low solid-state ionisation potential and good-quality amorphous film, 4,4",4""-Tris[phenyl(m-tolyl)amino]triphenylamine, m-MTDATA acts as an effective material for the hole-injection buffer layer (HIL) that facilitates hole injection from the ITO electrode to the hole transporting layer (HTL). This potentially lowers the driving voltage of the OLED devices.

F4-TCNQ, a strong electron acceptor, is always used together with m-MTDATA as a p-doping material to improve the conductivity of the HTL buffering layer. Typical structure of the device (or part of the device) is ITO/p-doped m-MTDATA/HTL/etc.

General Information

CAS number124729-98-2
Chemical formulaC57H48N4
Molecular weight789.02 g/mol
Absorptionλmax 312 nm, 342 nm in THF
Fluorescenceλem 425 nm in THF
HOMO/LUMOHOMO 5.1 eV, LUMO 2.0 eV [1]
Synonyms
  • 4,4",4""-Tris[(3-methylphenyl)phenylamino]triphenylamine
Classification / Family

Triphenylamine derivatives, Hole-injection materials, Hole transporting materials, Light-emitting diodes, Organic electronics

Product Details

Purity98.7% (sublimed)
Melting point210 °C
AppearanceYellow/white powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure

Chemical structure of m-MTDATA
Chemical Structure of 4,4′,4′′-Tris[phenyl(m-tolyl)amino]triphenylamine (m-MTDATA)

Device Structure(s)

Device structureITO/MoOx (2 nm)/m-MTDATA: MoOx (30 nm, 15 wt.%)/m-MTDATA(10 nm)/Ir(ppz)(10 nm)/CBP:PO-01* (3 nm, 6 wt.%)/Ir(ppz)3(1 nm)/DBFDPOPhCz*:FIrpic (10 nm,10 wt.%)/Bphen (36 nm)/LiF(1 nm)/Al [3]
ColourWhite  white
Max. EQE12.2%
Max. Current Efficiency42.4 cd/A
Max. Power Efficiency47.6 lm W1
Device structureITO/[F4-TCNQ(x nm)/m-MTDATA(y nm)]n/NPB/Alq3/Bphen/Cs2CO3/Al [4]
ColourGreen  green
Max. Luminance23,500 cd/m2
Max. Current Efficiency7.0 cd/A
Max. Power Efficiency4.46 lm W1  
Device structureITO/PEDOT:PSS(40nm)/m-MTDATA:Ir(Flpy-CF3)(40nm)/TmPyPB(55nm)/LiF(0.5nm)/Al(100nm) [5]
Colour Yellow  yellow
Max. EQE25.2%
Max. Luminance 43,085 cd/m2
Max. Current Efficiency74.3 cd/A
Max. Power Efficiency97.2 lm W1
Device structure                                      ITO/PEDOT:PSS/m-MTDATA (20 nm)/m-MTDATA:3TPYMB (60 nm)/3TPYMB (10 nm)/LiF (0.8 nm)/ Al (100 nm) [6]
Colour Red  red
Max. Luminance17,100cd/m2
Max. Current Efficiency 36.79 cd/A
Device structure ITO (80 nm)/m-MTDATA (20 nm)/NPB (20 nm)/[ADN:Alq3 (4:1)]:1wt.% DCJTB:0.2wt.%C545T/Alq3 (30 nm)/LiF (1 nm)/Al (100 nm) [7]
ColourRed  red
Max. Luminance11,600 cd/m2    
Max. Current Efficiency3.6 cd/A 
Device structure ITO/m-MTDATA*:F4-TCNQ (100 nm)/TPD (5 nm)/Alq3 (20 nm) /BPhen (10 nm)/ Bphen:Li (30 nm)/LiF (1 nm)/Al (100 nm) [8] 
ColourGreen  green
Max. Luminance10,000 cd/m2 at 5.2 V
Max. Current Efficiency5.27 cd/A
Device structure ITO/m-MTDATA (30 nm)/NPB (20 nm)/TPBI:4 wt% Ir(ppy)3:2 wt%Ir(piq)2(acac) (30 nm)/Alq3(20 nm)/LiF/Al [9]
ColourWhite  white
Max. Luminance33,012 cd/m2
Current Efficiency@100 

cd/m2

15.3 cd/A
Max. Powder Efficiency10.7 lm W1
Device structure ITO/m-MTDATA/TPD/F-TBB*/Alq3/MgAg [10]
ColourBlue   blue oled
Max EQE1.4%
Maximum luminance3960 cd m-2 at 15.0 V

*For chemical structure information please refer to the cited references.

Pricing

GradeOrder CodeQuantityPrice
Sublimed (>98.0% purity)M621250 mg£118.00
Sublimed (>98.0% purity)M621500 mg£189.00
Sublimed (>98.0% purity)M6211 g£329.00

MSDS Documentation

m-MTDATA MSDSm-MTDATA MSDS sheet

Literature and Reviews

  1. Nanoscale transport of charge-transfer states in organic donor–acceptor blends,  P. B. Deotare et al., Nat. Mater., 14, 1130-1135 (2015). DOI: 10.1038/NMAT4424.
  2. Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex, D. Graves et al., Adv. Funct. Mater., 24, 2343–2351 (2014). DOI: 10.1002/adfm.201303389.
  3. Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014). http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
  4. Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
  5. Solution-Processed Phosphorescent Organic LightEmitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency, S. Wang et al., Sci. Report, 5:12487 (2015); DOI: 10.1038/srep12487.
  6. Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses, Q Huang et al., Appl. Phys. Lett. 104, 161112 (2014); http://dx.doi.org/10.1063/1.4870492.
  7. Red organic light-emitting diodes with high efficiency, low driving voltage and saturated red color realized via two step energy transfer based on ADN and Alq3 co-host system, K. Haq et al., Curr. Appl. Phys., 9, 257-262 (2009); doi:10.1016/j.cap.2008.02.005.
  8. Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
  9. High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer, W. Xie et al., Semicond. Sci. Technol. 20, 326–329 (2005); doi:10.1088/0268-1242/20/3/013.
  10. Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
  11. Highly efficient flexible organic light-emitting devices utilizing F4-TCNQ/m-MTDATA multiple quantumwell structures, X. Wu et al., J. Luminescence 132, 1261–1264 (2012). doi:10.1016/j.jlumin.2011.12.084.
  12. High-efficiency electrophosphorescent organic light-emitting diodes with double lightemittinglayers, X. Zhou et al., Appl. Phys. Lett., 81, 4070 (2002). doi: 10.1063/1.1522495.

To the best of our knowledge the technical information provided here is accurate. However, Ossila assume no liability for the accuracy of this information. The values provided here are typical at the time of manufacture and may vary over time and from batch to batch.

专家支持 我们在这里为您提供帮助。我们的使命是为我们的产品提供最佳的技术支持,因此,如果您有任何疑问,请随时与我们联系。请更一般地享受这些指南,评论和对我们系统以及相关理论的概述。 视频指南和教程 使用PDMS进行2D材料的粘弹性转移 制作OLED和OPV太阳能电池:快速入门指南 空气钙钛矿设备 所有影片 书面指南和应用说明 旋涂 旋涂:膜厚指南 旋涂:难处理溶液指南 解决方案处理技术:比较 接触角:理论和测量指南 表面能指南 表面润湿的接触角测量 在不平坦表面上的接触角测量 薄层电阻:理论指南 四点探针测量指南 薄膜的薄层电阻测量 浸涂理论:膜厚 浸涂:缺陷故障排除指南 缝模涂布:理论,设计与应用 槽模涂布:缺陷故障排除指南 太阳能电池:理论与测量指南 IV曲线:测量指南 有机光伏:简介 有机光伏与第二代太阳能电池技术 有机光伏与第三代太阳能电池技术 OPV和OLED制作指南 大规模沉积有机太阳能电池 有机光伏绿色溶剂 钙钛矿和钙钛矿太阳能电池-简介 钙钛矿加工 FTO基板:将非图案化基板用于光伏设备 钙钛矿太阳能电池:增加稳定性和耐用性的方法 钙钛矿太阳能电池:退化的原因 钙钛矿太阳能电池:钝化技术 钙钛矿常见问题 二维材料简介 使用PDMS进行2D材料的粘弹性转移 二硫化钼 使用环保材料将氧化石墨烯还原为石墨烯 基于解决方案的OFET 什么是OLED? OLED测试指南 循环伏安法:电化学技术简介     文献评论:博士生凝聚 一名博士生凝结:OPV处理条件的影响 一名博士生凝视:ITIC及其衍生物成为OPV受体 一名博士生凝结:微调的ADA小分子受体 一名博士生凝结:影响OPV稳定性的因素 一名博士生凝结:三元有机太阳能电池简介 博士生凝聚:为新研究人员编写代码     系统概述 光伏基板概述 OLED基板(像素阳极)系统概述 低密度OFET制造系统概述和原理图 高密度OFET制造系统概述和原理图 解决方案处理的OFET基板系统概述 长通道OFET制作系统概述 Luminosyn™高纯聚合物